plot stream over two spheres
1 次查看(过去 30 天)
显示 更早的评论
A =[ -4.7107
0.0012
-0.0056
0.0132
-0.0253
0.0435
-0.0689
0.1031
-0.1473
0.2040
-0.2737
0.3607
-0.4647
0.5927
-0.7425
0.9265
-1.1387
1.4014
-1.7014
2.0810
-2.5114
3.0805
-3.7224
4.6475
-5.6872
7.5039
-9.5388
16.4146
-25.4535
14.3236];
B=[ -3.3794
0.0005
-0.0009
0.0006
-0.0003
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000];
C=[ 6.8417
-0.0007
0.0007
-0.0003
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000];
D=[ -4.7100
-0.0012
0.0058
-0.0132
0.0253
-0.0435
0.0689
-0.1032
0.1473
-0.2040
0.2737
-0.3608
0.4648
-0.5928
0.7426
-0.9266
1.1388
-1.4016
1.7016
-2.0813
2.5118
-3.0810
3.7230
-4.6482
5.6881
-7.5050
9.5403
-16.4171
25.4574
-14.3258];
E=[ -3.3789
-0.0005
0.0009
-0.0006
0.0003
-0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000];
F=[ 6.8407
0.0007
-0.0008
0.0003
-0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000];
a = 1 ; %RADIUS
L=.1;
dd=4;
kappa=1;gam=0.3;arh=1; %a2=1;u2=1;beta1=beta2=1
al=kappa.*(2+kappa)./(gam.*(1+kappa));
alpha1=real(((al.^2+arh.^2)./2+((al.^2+arh.^2).^2-(2.*kappa.*arh.^2./gam).^(1./2))./2).^(1./2));
alpha2=real(((al.^2+arh.^2)./2-((al.^2+arh.^2).^2-(2.*kappa.*arh.^2./gam).^(1./2))./2).^(1./2));
c =-a/L;
b =a/L;
m =a*100; % NUMBER OF INTERVALS
[x,y]=meshgrid([c+dd:(b-c)/m:b],[c:(b-c)/m:b]);
[I, J]=find(sqrt(x.^2+y.^2)<(a-.1));
if ~isempty(I)
x(I,J) = 0; y(I,J) = 0;
end
r=sqrt(x.^2+y.^2);
t=atan2(y,x);
r2=sqrt(r.^2+dd.^2-2.*r.*dd.*cos(t));
zet=(r.^2-r2.^2-dd.^2)./(2.*r2.*dd);
%for i1=1:length(x);
% for k1=1:length(x);
% if sqrt(x(i1,k1).^2+y(i1,k1).^2)>1./L;
% r(i1,k1)=0;r2(i1,k1)=0;
% end
% end
%end
warning off
qr1=0;
for i=2:7
Ai=A(i-1);Bi=B(i-1);Ci=C(i-1);Di=D(i-1);Ei=E(i-1);Fi=F(i-1);
qr1=qr1-(Ai.*r.^(-i-1)+r.^(-3./2).*besselk(i-1./2,r.*alpha1).*Bi+r.^(-3./2).*besselk(i-1./2,r.*alpha2).*Ci).*legendreP(i-1,cos(t))-(Di.*r2.^(-i-1)+r2.^(-3./2).*besselk(i-1./2,r2.*alpha1).*Ei+r2.^(-3./2).*besselk(i-1./2,r2.*alpha2).*Fi).*legendreP(i-1,zet);
end
hold on
[DH1,h1]=contour(x,y,qr1,3,'-k');
%axis square;
title('$(a)$ $\ell=0.1,\;\alpha=1.0$','Interpreter','latex','FontSize',10,'FontName','Times New Roman','FontWeight','Normal')
%%%%%%%%%%%%%%%% $\frac{\textstyle a_1+a_2}{\textstyle h}=6.0,\;
hold on
t3 = linspace(0,2*pi,1000);
h2=0;
k2=0;
rr2=1;
x2 = rr2*cos(t3)+h2;
y2 = rr2*sin(t3)+k2;
set(plot(x2,y2,'-k'),'LineWidth',1.1);
fill(x2,y2,'w')
%axis square;
hold on
t2 = linspace(0,2*pi,1000);
h=dd;
k=0;
rr=2;
x1 = rr*cos(t2)+h;
y1 = rr*sin(t2)+k;
set(plot(x1,y1,'-k'),'LineWidth',1.1);
fill(x1,y1,'w')
%axis square;
axis off
1 个评论
采纳的回答
Cris LaPierre
2021-11-20
qr1 is all NaNs. Assuming the countours are supposed to be your streamlines, you should check your equation. I'm not sure your for loop is doing what you intended. At the least, there is an issue with your calculation.
5 个评论
Cris LaPierre
2021-11-20
Personally, I use the streamlines function to create streamlines, not contour. However, even with streamlines, you will need to calculate and input the vector field components u and v.
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Legend 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!