An m-by-n-by-1 image cannot be used as input image in the Fully Convolutional Network FCN ?
1 次查看(过去 30 天)
显示 更早的评论
Hi, Can you help? I am trying to use the FCN (fully convolutional network) layers for semantic segmentation. Here's the function I used:
lgraph = fcnLayers(InputImageSize, NumberOfClasses);
net = trainNetwork(dstrain,lgraph,options);
Here's the error I got:
Error using trainNetwork (line 184) The training images are of size 256×256×1 but the input layer expects images of size 256×256×3. Error in network_bx (line 114)
My question: I would like to know if FCN layer does not work on m×n×1 or grayscale images. If it does, can you help me to understand why I got the above error when I used images with the size m×m×1?
2 个评论
回答(2 个)
Matt J
2021-12-8
I was able to modify the input size in deepNetworkDesigner. No idea what will happen when you try to train it.
14 个评论
yanqi liu
2021-12-8
yes,sir,may be change the data load,such as
imageSize = [256 256 3];
augimds = augmentedImageDatastore(imageSize,dstrain,'ColorPreprocessing','gray2rgb');
1 个评论
yanqi liu
2021-12-9
yes,sir,may be use
trainingImages = imageDatastore('train',...
'IncludeSubfolders',true,...
'LabelSource','foldernames','ReadFcn',@data_preporcess);
function data = data_preporcess(file)
data = imread(file);
if ndims(data) == 2
data = cat(3, data, data, data);
end
data = imresize(data, [256 256], 'bilinear');
data = double(data);
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Image Data Workflows 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!