Solve time-dependent ODE using the result from another time-dependent ODE

1 次查看(过去 30 天)
Hello everyone,
I needed to solve two ODEs of the following forms:
dRdS = 1 - B(S)*R(S) - A(S)*(R(S)^2); (1)
dWdS = - A(S)*R(S)*W(S) + R(S)*P(S); (2)
where B(S) , A(S) and P(S) are all deterministic functions depending on S, defined as follows:
Bs = linspace(78.809,80,100);
As = linspace(78.809,80,100);
Ps = linspace(78.809,80,100);
A = (2./(vm.*(As.^2))) .* ((sigma^2*vm)/(dv^2) + abs(alpha-beta*vm)/dv + r + 1/dtau);
B = -(2*(r-q)*Bs)./(vm*(Bs.^2));
P = (2./(vm.*Ps.^2)).*( ((-(sigma^2)*vm)/2)*(2*C/(dv^2)) - (abs(alpha-beta*vm)/2)*(2*C/dv) - (1/dtau)*C );
all the parameters above are defined beforehand.
I solved (1) by first writing a function dRdS:
function dRdS = dRdS(S,R,Bs,B,As,A)
B = interp1(Bs,B,S);
A = interp1(As,A,S);
dRdS = 1 - B.*R - A.*R*R;
end
and solved it using ode45:
S_span = [78.809 80];
IC = 0;
opts = odeset('RelTol',1e-2,'AbsTol',1e-4);
[S, R] = ode45(@(S,R) dRdS(S,R,Bs,B,As,A), S_span, IC, opts);
where I obtained a 53x2 matrix of [S, R].
I then moved on to write a function dWdS to solve (2):
function dWdS = dWdS(S,W,Bs,B,As,A,Ps,P,R)
B = interp1(Bs,B,S);
A = interp1(As,A,S);
P = interp1(Ps,P,S);
dWdS = -A.*R.*W-R.*P;
end
and using ode45:
IC_W = 0;
[S, W] = ode45(@(S,W) dWdS(S,W,Bs,B,As,A,Ps,P,Rm), S_span, IC_W);
While the ODE (1) was successfully solved, I encountered error message while solving ODE (2) that says:
"Error using odearguments (line 95)
@(S,W)DWDS(S,W,BS,B,AS,A,PS,P,R) returns a vector of length 53, but the length of initial
conditions vector is 1. The vector returned by @(S,W)DWDS(S,W,BS,B,AS,A,PS,P,R) and the
initial conditions vector must have the same number of elements."
In light of this error, I defined IC_W = zeros(53), but encountered another error: "Arrays have incompatible sizes for this operation."
So, I'd like to ask what exactly might have gone wrong in this implementation? If I'm adopting a wrong method for solving ODE (2), could someone enlighten me with a better method for solving such ODE which have the result from another ODE as part of the coefficient?
Sorry about the long question, and thanks so much!
  4 个评论
Mingze Yin
Mingze Yin 2021-12-12
@Torsten Thanks for answering! Could you introduce to me a little more on how to solve both equations in one call? Sorry im actually not very familiar with the ode45 solver...
Mingze Yin
Mingze Yin 2021-12-12
@Jan Thanks for answering! Allow me to spend some time understanding and implementing the ideas you shared :)

请先登录,再进行评论。

采纳的回答

Torsten
Torsten 2021-12-12
function main
IC = [0;0];
S_span = [78.809 80];
opts = odeset('RelTol',1e-4,'AbsTol',1e-4);
[S, y] = ode45(@fun, S_span, IC, opts);
R = y(:,1);
W = y(:,2);
end
function dy = fun(S,y)
R = y(1);
W = y(2);
vm = ...;
sigma=...;
dv = ...;
alpha=...;
beta=...;
dtau=...;
r=...;
q=...;
C=...;
A = (2./(vm.*(S.^2))) .* ((sigma^2*vm)/(dv^2) + abs(alpha-beta*vm)/dv + r + 1/dtau);
B = -(2*(r-q)*S)./(vm*(S.^2));
P = (2./(vm.*S.^2)).*( ((-(sigma^2)*vm)/2)*(2*C/(dv^2)) - (abs(alpha-beta*vm)/2)*(2*C/dv) - (1/dtau)*C );
dRdS = 1 - B.*R - A.*R*R;
dWdS = -A.*R.*W-R.*P;
dy = [dRdS;dWdS];
end
  6 个评论
Torsten
Torsten 2021-12-14
Use bvp4c instead of ode45 or adjust the initial condition v_start for V at s=s_start such that you receive the desired terminal value v_terminal_desired for V at s=s_terminal. This can be done by using "fzero" to solve
v_terminal(v_start) - v_terminal_desired = 0.
Pavitra Vaishali
Pavitra Vaishali 2023-4-12
Hi I have same kind of problem, although I get martices as answer. Please, if anyone may help me with it

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by