curve generation plot for given pdf

2 次查看(过去 30 天)
I am not able to generate the curve of FIg.5 as per attached pdf or given link below
I am trying to replicate the same but having some problem. Please solve the same
Thank you
clear all
clc
for i=1:2
alpha(i)= (pi*22)/180;
beta(i)= atan(cos(alpha(i))*sin(gamma(i))./(1+sin(alpha(i))*sin(gamma(i))));
end
R=0.4;
t(1)= R*cos(alpha(1))./cot(alpha(1)+beta(1));
t(2)= R*cos(alpha(2))./cot(alpha(2)+beta(2));
n_1=1.49;
theta_1= asin(n_1.*sin(alpha(1)))-alpha(1);
T=0.2;
H_1=0.1;
t(3)= (H_1-t(1)*(tan(alpha(1))-cot(theta_1)))./(cot(theta_1)-tan(alpha(2)));
t(4)= (t(2)*(tan(alpha(2))-cot(theta_1))+.....
T*(tan(alpha(1))-tan(alpha(2)))-H_1)./(tan(alpha(1))-cot(theta_1));
h_1=(T-t(1)-t(4))*tan(alpha(1));
h_2=(T-t(3)-t(2))*tan(alpha(2));
n_2=1.49;
lamda_min=0.004;
lamda_max=0.007;
phase= h_1*(n_1 -1)./(lamda_min)+ h_2*(n_2-1)./(lamda_min);
e1= (sin(pi*((1-(phase/2*pi))))/(pi*((1-(phase/2*pi)))))^2;
e2= (sin(pi*(t(1)/T))/(pi*(t(1)/T)))^2;
e3= (sin(pi*(t(2)/T))/(pi*(t(2)/T)))^2;
e4= (sin(pi*(t(3)/T))/(pi*(t(3)/T)))^2;
e5= (sin(pi*(t(4)/T))/(pi*(t(4)/T)))^2;
x=0.001;
f=0.025;
syms x
b= int(R-sqrt(R.^2-x.^2),0, f);
c=sqrt((1/f)*b);
e6= exp(((-4*pi*c)/lamda_min).^8);
effic= e1*e2*e3*e4*e5*e6;
syms lamda
pide=int(e1*e2*e3*e4*e5, lamda_min,lamda_max);
fpide= (1/(lamda_max-lamda_min))*pide;
  1 个评论
Kundan Prasad
Kundan Prasad 2021-12-15
please have a look into matlab code once.
I have attached the image of plot which is need to be obtained
Thank you

请先登录,再进行评论。

回答(1 个)

Simran
Simran 2025-3-27
To generate the given curve, you can try these changes in the original code :
  1. The variable “gamma” is used but not defined in the original code. This is causing an error when trying to calculate “beta(i)”.
  2. The symbolic integration of “e1*e2*e3*e4*e5” with respect to “lamda” is not required, because these are constants with respect to “lamda”.
  3. The variable “effic” is calculated but not used further in the code.
  4. For plotting, instead of relying on symbolic integration, try using sample data points to simulate the plot, which is more straightforward and aligns with the intended visualization.
  5. I have added additional plot customization to better reflect the intended graph.
This is the curve that I got implementing these changes:
You can refer to the following documentation for more understanding:

类别

Help CenterFile Exchange 中查找有关 Calculus 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by