Trying to get 80% and greater accuracy from network. Can someone help in editing my code to reach to 80% or close too?

4 次查看(过去 30 天)
clc; clear all; close all;
load generated_data.mat
% 2289*180
% 6 classes
X1_T = X1';
rand('seed', 0)
ind = randperm(size(X1_T, 1));
X1_T = X1_T(ind, :);
Y1 = categorical(Y1(ind));
% Split Data
X1_train = X1_T;
train_X1 = X1_train(1:120,:);
train_Y1 = Y1(1:120);
% Data Batch
XTrain=(reshape(train_X1', [2289,120]));
val_X1 = X1_train(121:150,:);
val_Y1 = Y1(121:150);
XVal=(reshape(val_X1', [2289,30]));
test_X1 = X1_train(151:180,:);
test_Y1 = Y1(151:180);
XTest=(reshape(test_X1', [2289,30]));
numFeatures = size(X1_T,2);
% number of hidden units represent the size of the data
numHiddenUnits = 180;
%number of classes represent different patients normal,LIS,type2....
numClasses = length(categories(categorical(Y1)));
layers = [ ...
sequenceInputLayer(numFeatures)
dropoutLayer(0.1)
bilstmLayer(numHiddenUnits,'OutputMode','sequence')
fullyConnectedLayer(numClasses)
instanceNormalizationLayer
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'MaxEpochs',150, ...
'GradientThreshold',1, ...
'Verbose',false, ...
'ValidationData',{XVal, val_Y1},...
'LearnRateDropFactor',0.2,...
'LearnRateDropPeriod',5,...
'Plots','training-progress');
% Train
net = trainNetwork(XTrain,train_Y1,layers,options);
% Test
miniBatchSize = 27;
YPred = classify(net,XTest, ...
'MiniBatchSize',miniBatchSize,...
'ExecutionEnvironment', 'cpu');
acc = mean(YPred(:) == categorical(test_Y1(:)))
figure
t = confusionchart(categorical(test_Y1(:)),YPred(:));
  2 个评论
Nathaniel Porter
Nathaniel Porter 2021-12-16
My validation accuracy at highest(without the InstanceNormalizationLayer) is 67.77% but I am currently trying to improve it to roughly 80%. Just asking if my code be manipulated currently to achive this number ?

请先登录,再进行评论。

采纳的回答

yanqi liu
yanqi liu 2021-12-16
编辑:yanqi liu 2021-12-16
yes,sir,may be use
clc; clear all; close all;
load generated_data.mat
% 2289*180
% 6 classes
rand('seed', 0)
X1_T = X1';
YC1 = categorical(Y1);
CS = categories(YC1);
train_index = []; val_index = []; test_index = [];
for i = 1 : length(CS)
indi = find(YC1==CS{i});
% Shuffling data
indi = indi(randperm(length(indi)));
% 2/3---train, 1/6---val, 1/6---test
index1 = round(length(indi)*2/3);
index2 = round(length(indi)*(2/3+1/6));
train_index = [train_index indi(1:index1)];
val_index = [val_index indi(1+index1:index2)];
test_index = [test_index indi(1+index2:end)];
end
ind = [train_index val_index test_index];
X1_T = X1_T(ind, :);
Y1 = categorical(Y1(ind));
% Split Data
X1_train = X1_T;
train_X1 = X1_train(1:120,:);
train_Y1 = Y1(1:120);
% Data Batch
XTrain=(reshape(train_X1', [2289,120]));
val_X1 = X1_train(121:150,:);
val_Y1 = Y1(121:150);
XVal=(reshape(val_X1', [2289,30]));
test_X1 = X1_train(151:180,:);
test_Y1 = Y1(151:180);
XTest=(reshape(test_X1', [2289,30]));
numFeatures = size(X1_T,2);
% number of hidden units represent the size of the data
numHiddenUnits = 500;
%number of classes represent different patients normal,LIS,type2....
numClasses = length(categories(categorical(Y1)));
layers = [ ...
sequenceInputLayer(numFeatures)
%dropoutLayer(0.5)
instanceNormalizationLayer
bilstmLayer(numHiddenUnits,'OutputMode','sequence')
%dropoutLayer(0.5)
instanceNormalizationLayer
bilstmLayer(round(numHiddenUnits/2),'OutputMode','sequence')
fullyConnectedLayer(numClasses)
instanceNormalizationLayer
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'MaxEpochs',100, ...
'GradientThreshold',1, ...
'Verbose',false, ...
'ValidationData',{XVal, val_Y1},...
'LearnRateDropFactor',0.2,...
'LearnRateDropPeriod',5,...
'Plots','training-progress');
% Train
net = trainNetwork(XTrain,train_Y1,layers,options);
% Test
miniBatchSize = 27;
YPred = classify(net,XTest, ...
'MiniBatchSize',miniBatchSize,...
'ExecutionEnvironment', 'cpu');
acc = mean(YPred(:) == categorical(test_Y1(:)))
figure
t = confusionchart(categorical(test_Y1(:)),YPred(:));
acc =
0.9667
>>
  2 个评论
yanqi liu
yanqi liu 2021-12-17
yes,sir,we know it is 6 classes,so just for every class,we choose 2/3、1/6、1/6 as train、val、test data,through this method,we can get the data split index

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Image Data Workflows 的更多信息

产品


版本

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by