Solving two second order ODEs

13 次查看(过去 30 天)
Jake Barlow
Jake Barlow 2021-12-25
评论: Star Strider 2021-12-25
Hi there!
I am trying to solve for U(t) and V(t) for the two second order ODEs
and ,
where a and w are constants and with the initial conditions and .
Then I want to plot the solutions against for a given time interval.
syms U(t) V(t)
%Constants definition
a = 1;
w = 100;
dU=diff(U,t);
dV=diff(V,t);
%Initial Conditions
y0 = [0 0 1 1];
eq1 = diff(U, t, 2) == -a*w*dV;
eq2 = diff(V,t, 2) == a*w*dU;
vars = [U(t); V(t)]
OTV = odeToVectorField([eq1,eq2])
M = matlabFunction(OTV,'vars', {'t','Y'});
interval = [0 5]; %time interval
ySol = ode45(M,interval,y0);
tValues = linspace(interval(1),interval(2),1000);
yValues1 = deval(ySol,tValues,1); %U(t) solution
yValues2 = deval(ySol,tValues,2); %V(t) solution
plot(yValues1,yValues2)
Does the above code correctly solve the system of differential equations and initial conditions and plot V(t) against U(t)?
If not, then please let me know what is incorrect. Also plese let me know if there is another way to solve the system of ODEs.
Thank you for your help. Much appreciated.

回答(2 个)

Star Strider
Star Strider 2021-12-25
Essentially, yes.
However it could be made a bit more efficient —
syms U(t) V(t)
%Constants definition
a = 1;
w = 100;
dU=diff(U,t);
dV=diff(V,t);
%Initial Conditions
y0 = [0 0 1 1];
eq1 = diff(U, t, 2) == -a*w*dV;
eq2 = diff(V,t, 2) == a*w*dU;
vars = [U(t); V(t)]
vars = 
[OTV,Subs] = odeToVectorField([eq1,eq2])
OTV = 
Subs = 
M = matlabFunction(OTV,'vars', {'t','Y'});
interval = [0 5]; %time interval
ySol = ode45(M,interval,y0);
tValues = linspace(interval(1),interval(2),1000);
yValues1 = deval(ySol,tValues,1); %U(t) solution
yValues2 = deval(ySol,tValues,2); %V(t) solution
plot(yValues1,yValues2)
% ---------- Slightly More Efficient: Solves Directly & Avoids The 'deval' Calls ----------
interval = [0 5]; %time interval
tValues = linspace(interval(1),interval(2),1000);
[t,y] = ode45(M,tValues,y0);
yValues1 = y(:,1); %U(t) solution
yValues2 = y(:,2); %V(t) solution
figure
plot(yValues1,yValues2)
xlabel('$V(t)$', 'Interpreter','latex')
ylabel('$\frac{dV(t)}{dt}$', 'Interpreter','latex')
.
  4 个评论
Jake Barlow
Jake Barlow 2021-12-25
Hi Star Strider, thank you very much for your comment. It is clearer now!

请先登录,再进行评论。


Paul
Paul 2021-12-25
I think there are a few mistakes in the code
syms U(t) V(t)
%Constants definition
a = 1;
w = 100;
dU=diff(U,t);
dV=diff(V,t);
%Initial Conditions
y0 = [0 0 1 1];
eq1 = diff(U, t, 2) == -a*w*dV;
eq2 = diff(V,t, 2) == a*w*dU;
vars = [U(t); V(t)]
vars = 
[OTV,S] = odeToVectorField([eq1,eq2]);
S
S = 
Note that S is ordered [V dV U dU], so that should be the ordering of the solution of ode45
M = matlabFunction(OTV,'vars', {'t','Y'});
interval = [0 5]; %time interval
% note the IC's are in the same order as S
ySol = ode45(M,interval,[0 1 0 1],odeset('MaxStep',0.0001,'InitialStep',0.0001));
tValues = linspace(interval(1),interval(2),10000);
yValues1 = deval(ySol,tValues,1); % V(t) solution
yValues2 = deval(ySol,tValues,2); % Vdot(t) solution
yValues3 = deval(ySol,tValues,3); % U(t) solution
yValues4 = deval(ySol,tValues,4); % Udot(t) solution
figure
plot(yValues3,yValues1) % plot U vs V
xlabel('U');ylabel('V')
An exact solution can be computed using dsolve()
sol = dsolve([eq1; eq2],[U(0)==0; V(0)==0; dU(0)==1; dV(0)==1])
sol = struct with fields:
V: sin(100*t)/100 - cos(100*t)/100 + 1/100 U: cos(100*t)/100 + sin(100*t)/100 - 1/100
Ufunc = matlabFunction(sol.U);
Vfunc = matlabFunction(sol.V);
plot(Ufunc(tValues),Vfunc(tValues))
xlabel('U');ylabel('V')
% compare numerical and exact solutions
figure
plot(tValues,yValues3-Ufunc(tValues),tValues,yValues1-Vfunc(tValues))

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

产品


版本

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by