Efficient matrix multiplication with weights
5 次查看(过去 30 天)
显示 更早的评论
Let A and B be two matrices, say square NxN matrices. Ordinary matrix multiplication A*B implements (A*B)_{ij} = Sum_k A_{ik} B_{kj}. Is there an efficient way in Matlab to implement a weighted version of this product, where we have a matrix of weights W and we want to do :
Weighted(A*B)_{ij} = Sum_k A_{ik} B_{kj} W_{i-j,k}
(let's say here that A and B are triangular so that only i>=j need be considered).
How can I efficiently express Weighted(A*B), avoiding, if possible, for loops and the like ? I would like to keep everything vectorialized / use only matrix products and elements wise products etc.
3 个评论
采纳的回答
Matt J
2022-1-20
编辑:Matt J
2022-1-20
A more memory efficient solution is as follows. It has a loop, but is still highly vectorized.
Wt=W.';
At=A.';
T=toeplitz(1:N,[1,zeros(1,N-1)]);
result=zeros(N);
for i=1:N
result(T==i)=sum( At(:,1:end+1-i).*Wt(:,i).*B(:,i:end) ,1);
end
2 个评论
Matt J
2022-1-20
You're welcome. If it works as you need it to, though, please Accept-click the answer.
更多回答(1 个)
Matt J
2022-1-20
编辑:Matt J
2022-1-20
Using sepblockfun() from,
T=toeplitz(1:N);
WW=W.';
WW=reshape(WW(:,T), N^2,N);
BB=repmat(B,N^2,1);
AA=repmat( reshape(A.',[],1) ,1,N^2);
result=sepblockfun(AA.*WW.*BB, [N,1] , 'sum' ); %
1 个评论
Matt J
2022-1-20
For N=1000, you would need a lot of RAM for this to work. You might be able to mitigate RAM requiements by using single floats inputs. The result could still be obtained in doubles with,
result=sepblockfun(AA.*WW.*BB, [N,1] , @(x,d)sum(x,d,'double') ); %
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Creating and Concatenating Matrices 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!