eig return complex values
8 次查看(过去 30 天)
显示 更早的评论
Hello,
I'm trying to find the eigenvalues and eigenvectors of an invertible matrix. The eig function returns me complex values.
But the matrix is invertible: I invert it on Pascal.
How to explain and especially how to solve this problem please?
The matrix I am trying to invert is the inv(C)*A matrix, from the attached files.
Thanks,
Michael
5 个评论
采纳的回答
Torsten
2022-1-22
编辑:Torsten
2022-1-22
Use
E = eig(A,C)
instead of
E = eig(inv(C)*A)
or
E = eig(C\A)
4 个评论
更多回答(1 个)
Matt J
2022-1-22
编辑:Matt J
2022-1-22
It turns out that B=C\A does have real eigenvalues in this particular case, but floating point errors approximations produce a small imaginary part that can be ignored.
load matrices
E=eig(C\A);
I=norm(imag(E))/norm(real(E))
So just discard the imaginary values,
E=real(E);
2 个评论
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
