''Conversion to function_handle from double is not possible.''

1 次查看(过去 30 天)
I get this error when I run my code. I was looking up what this error means, but I can't figure it out in context of my code.. This is main code.
clc
clear all
global x1e x2e x3e x1r x2r x3r alfa12 alfa13 alfa23
%LLE podatci - ekstrakcija aromata smjesom TTEG i vode - 6 komponenata (heptan) na 60°C
%eksperimentalni podatci - ekstrakt
x1e = [0.0140 0.0175 0.0163 0.0188 0.0181 0.0227 0.0228 0.0214 0.0191 0.0208];
x2e = [0.0729 0.0696 0.106 0.1041 0.1107 0.0931 0.0732 0.0739 0.113 0.069];
x3e = 1 - x1e - x2e;
%eksperimentalni podatci - rafinat
x1r = [0.689 0.6289 0.485 0.4727 0.4332 0.6831 0.6967 0.6553 0.4507 0.6139];
x2r = [0.275 0.2855 0.4418 0.3501 0.4056 0.313 0.2716 0.271 0.4436 0.253];
x3r = 1 - x1r - x2r;
%Optimizacija NRTL parametara - Metoda Sorensena i Arlta
%1. stupanj optimizacije - opis fazne ravnoteze - geneticki algoritam
%parametri neslucajnosti
alfa12 = 0.3;
alfa13 = 0.3;
alfa23 = 0.2;
rng default
%poziv funkcije cilja
OF_A = @OF_2_6H_60C;
%definiranje strukture problema
problem.fitnessfcn = OF_A;
problem.nvars = 6;
problem.options = optimoptions('ga');
[x,fval] = ga(problem)
This is function I called in main code.
function [OF2] = OF_2_6H_60C(tau12,tau13,tau21,tau23,tau31,tau32)
global x1e x2e x3e x1r x2r x3r alfa12 alfa13 alfa23
syms tau12 tau13 tau21 tau23 tau31 tau32
G12 = exp(-alfa12*tau12);
G13 = exp(-alfa13*tau13);
G21 = exp(-alfa12*tau21);
G23 = exp(-alfa23*tau23);
G31 = exp(-alfa13*tau31);
G32 = exp(-alfa23*tau32);
A1e = (x2e.*tau21*G21 + x3e.*tau31*G31)./(x1e + x2e.*G21 + x3e.*G31) + (((x1e./(x1e + x2e.*G21 + x3e.*G31)).*(-(x2e.*tau21*G21 + x3e.*tau31*G31)./(x1e + x2e.*G21 + x3e.*G31))) + ((x2e.*G12)./(x1e.*G12 + x2e + x3e.*G32)).*(tau21 - (x1e.*tau12*G12 + x3e.*tau32*G32)./(x1e.*G12 + x2e + x3e.*G32))) + ((x3e.*G13./(x1e.*G13 + x2e.*G23 + x3e)).*(tau31 - (x1e.*tau13*G13 + x2e.*tau23*G23)./(x1e.*G13 + x2e.*G23 + x3e)));
gamma1e = exp(A1e);
A2e = (x1e.*tau12*G12 + x3e.*tau32*G32)./(x1e.*G12 + x2e + x3e.*G32) + ((x1e.*G21./(x1e + x2e.*G21 + x3e.*G31)).*(tau12 - (x2e.*tau21*G21 + x3e.*tau31*G31)./(x1e + x2e.*G21 + x3e.*G31))) + ((x2e./(x1e.*G12 + x2e + x3e.*G32)).*(-(x1e.*tau12*G12 + x3e.*tau32*G32)./(x1e.*G12 + x2e + x3e.*G32))) + ((x3e.*G23./(x1e.*G13 + x2e.*G23 + x3e)).*(tau32 - (x1e.*tau13*G13 + x2e.*tau23*G23)./(x1e.*G13 + x2e.*G23 + x3e)));
gamma2e = exp(A2e);
A3e = (x1e.*tau13*G13 + x2e.*tau23*G23)./(x1e.*G13 + x2e.*G23 + x3e) + ((x1e.*G21./(x1e + x2e.*G21 + x3e.*G31)).*(tau13 - (x2e.*tau21*G21 + x3e.*tau31*G31)./(x1e + x2e.*G21 + x3e.*G31))) + ((x2e.*G32./(x1e.*G12 + x2e + x3e.*G32)).*(tau23 - (x1e.*tau12*G12)./(x1e.*G12 + x2e + x3e.*G32))) + ((x3e./(x1e.*G13 + x2e.*G23 + x3e)).*(-(x1e.*tau13*G13 + x2e.*tau23*G23)./(x1e.*G13 + x2e.*G23 + x3e)));
gamma3e = exp(A3e);
A1r = (x2r.*tau21*G21 + x3r.*tau31*G31)./(x1r + x2r.*G21 + x3r.*G31) + ((x1r./(x1r + x2r.*G21 + x3r.*G31)).*(-(x2r.*tau21*G21 + x3e.*tau31*G31)./(x1r + x2r.*G21 + x3r.*G31))) + ((x2r.*G12)./(x1r.*G12 + x2r + x3e.*G32)).*(tau21 - ((x1r.*tau12*G12 + x3r.*tau32*G32)./(x1r.*G12 + x2r + x3r.*G32))) + ((x3r.*G13./(x1r.*G13 + x3r)).*(tau31 - (x1r.*tau13*G13 + x2r.*tau23*G23)./(x1r.*G13 + x2r.*G23 + x3r)));
gamma1r = exp(A1r);
A2r = (x1r.*tau12*G12 + x3r.*tau32*G32)./(x1r.*G12 + x2r + x3r.*G32) + ((x1r.*G21./(x1r + x2r.*G21 + x3r.*G32)).*(tau12 - (x2r.*tau21.*G21 + x3r.*tau31*G31)./(x1r + x2r.*G21 + x3r.*G31))) + ((x2r./(x1r.*G12 + x2r + x3r.*G32)).*(-(x1r.*tau12*G12 + x3r.*tau32*G32)./(x1r.*G12 + x2r + x3r.*G32))) + ((x3r.*G23./(x1r.*G13 + x2r.*G23 + x3r)).*(tau32 - (x1r.*tau13*G13 + x2r.*tau23*G23 + x3r)));
gamma2r = exp(A2r);
A3r = (x1r.*tau13*G13 + x2r.*tau23*G23)./(x1r.*G13 + x2r.*G23 + x3r) + ((x1r.*G31./(x1r + x2r.*G21 + x3r.*G31)).*(tau13 - (x2r.*tau21*G21 + x3r.*tau31*G31)./(x1r + x2r.*G21 + x3r.*G31))) + ((x2r.*G32./(x1r.*G12 + x2r + x3r.*G32)).*(tau23 - (x1r.*tau12*G12)./(x1r.*G12 + x2r + x3r.*G32))) + ((x3r./(x1r.*G13 + x2r.*G23 + x3r)).*(-(x1r.*tau13*G13 + x2r.*tau23*G23)./(x1r.*G13 + x2r.*G23 + x3r)));
gamma3r = exp(A3r);
for i = 1:10
A(i)=((x1e(i)*gamma1e(i) - x1r(i)*gamma1r(i))/(x1e(i)*gamma1e(i) + x1r(i)*gamma1r(i))^2) + ((x2e(i)*gamma2e(i) - x2r(i)*gamma2r(i))/(x2e(i)*gamma2e(i) + x2r(i)*gamma2r(i))^2) + ((x3e(i)*gamma3e(i) - x3r(i)*gamma3r(i))/(x3e(i)*gamma3e(i) + x3r(i).*gamma3r(i))^2);
end
F2 = sum(A,'all');
OF2 = matlabFunction(F2)
end
  5 个评论
Dario Miric
Dario Miric 2022-1-25
编辑:Dario Miric 2022-1-25
Hmm, thanks. I thought I needed to define parameters as symbolic variables because matlab wouldn't know what these are without defining them first in some way. What you said has sense in context of have ga algorithm works in matlab. Can I leave tau's as parameters because it is a lot of work to change every parameter to x?
Torsten
Torsten 2022-1-26
In function OF_2_6H_60C, you can work with the name tau for the variables.

请先登录,再进行评论。

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Surrogate Optimization 的更多信息

产品


版本

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by