How to fix Error using atan2 Inputs must be real?

6 次查看(过去 30 天)
Function
function ConcLin = Line(A,B)
%% Linear Moving along desired path
% **** Linear First Movement ***
% Calling Inverse Kinematics to
%% number of increments
ResLin = 100;
%% Equations
DeltaX = (B(1,1) - A(1,1)) / ResLin;
DeltaY = (B(1,2) - A(1,2)) / ResLin;
DeltaZ = (B(1,3) - A(1,3)) / ResLin;
%% Looping through each point of the line
tic;
AnglesLin = zeros(6); %preallocating memory
for f = 1:ResLin
%% calculating actual point
A(1,1) = A(1,1) + DeltaX * f;
A(1,2) = A(1,2) + DeltaY * f;
A(1,3) = A(1,3) + DeltaZ * f;
AnglesLin(f,:) = IKine(A);
end
toc
%% Increments of Time
tic;
TimeLin = zeros(1); %preallocating memory
for clockLin = 1:ResLin
TickTockLin = clockLin*0.1+10;
TimeLin(clockLin,:) = TickTockLin;
end
toc
%% Concatenating Time & Angles. Time will be the first column
ConcLin = [TimeLin,AnglesLin];
Main
%% Coordinates Input
% LINE desired Paths. If Input method is used, comment out this block of code.
% *****We will define these as one matrix 1x12*****
Lin1 = [750, -75, 670, 0, 0, 1, 0, -1, 0, 1, 0, 0];%A
% Xa = Lin1(1,1); Ya = Lin1(1,2); Za = Lin1(1,3);
Lin2 = [750, -75, 550, 0, 0, 1, 0, -1, 0, 1, 0, 0];%B
% Xb = Lin2(1,1); Yb = Lin2(1,2); Zb = Lin2(1,3);
Lin3 = [750, 75, 550, 0, 0, 1, 0, -1, 0, 1, 0, 0];
Lin4 = [750, 75, 670, 0, 0, 1, 0, -1, 0, 1, 0, 0];
Lin5 = [750, 0, 700, 0, 0, 1, 0, -1, 0, 1, 0, 0];
Lin6 = [750, 0, 550, 0, 0, 1 0, -1, 0, 1, 0, 0];
%% Calling Linear Motion
ConcLin = Line(Lin1, Lin2);
  5 个评论
Steven Lord
Steven Lord 2022-1-26
You're assuming d3/p1 is strictly less than or equal to 1. What guarantee do you have that this is the case?
If it was ever so slightly greater than 1:
d3 = 2;
p1 = 2 - eps(2); % Just barely less than 2
s = (d3/p1)
s = 1.0000
s > 1 % true
ans = logical
1
sqrt(1-s^2) % complex
ans = 0.0000e+00 + 2.1073e-08i
You can use min and max to ensure s is strictly in a desired range.
Konard Adams
Konard Adams 2022-1-27
Thank you. Here is the solution.:
When we move from previous point to next point, the coordinate equals to the previous coordinate plus the Delta, so we don't need to multiply f.
Before:
for f = 1:ResLin
%% calculating actual point
A(1,1) = A(1,1) + DeltaX * f;
A(1,2) = A(1,2) + DeltaY * f;
A(1,3) = A(1,3) + DeltaZ * f;
AnglesLin(f,:) = IKine(A);
Correct:
for f = 1:ResLin
%% calculating actual point
A(1,1) = A(1,1) + DeltaX;
A(1,2) = A(1,2) + DeltaY;
A(1,3) = A(1,3) + DeltaZ;
AnglesLin(f,:) = IKine(A);

请先登录,再进行评论。

采纳的回答

Konard Adams
Konard Adams 2022-1-27
When we move from previous point to next point, the coordinate equals to the previous coordinate plus the Delta, so we don't need to multiply f.
Before:
for f = 1:ResLin
%% calculating actual point
A(1,1) = A(1,1) + DeltaX * f;
A(1,2) = A(1,2) + DeltaY * f;
A(1,3) = A(1,3) + DeltaZ * f;
AnglesLin(f,:) = IKine(A);
Correct:
for f = 1:ResLin
%% calculating actual point
A(1,1) = A(1,1) + DeltaX;
A(1,2) = A(1,2) + DeltaY;
A(1,3) = A(1,3) + DeltaZ;
AnglesLin(f,:) = IKine(A);
Now it works. @Torsten @Steven Lord Thanks for helping. I learn a lot from these discussions. Cheers!

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Point Cloud Processing 的更多信息

标签

产品


版本

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by