Vandermonde-like matrix
6 次查看(过去 30 天)
显示 更早的评论
For any given number x, what's the easiest way to generate the following square matrix without using any loop:
0 x^(-0.5) x^(-1.0) x^(-1.5) x^(-2.0)
x^(-0.5) x^(-1.0) x^(-1.5) x^(-2.0) x^(-2.5)
x^(-1.0) x^(-1.5) x^(-2.0) x^(-2.5) x^(-3.0)
x^(-1.5) x^(-2.0) x^(-2.5) x^(-3.0) x^(-3.5)
x^(-2.0) x^(-2.5) x^(-3.0) x^(-3.5) x^(-4.0)
Here, in this example, I set the size of the matrix to be 5, but it has to be generated for any integer n.
Notice the matrix does look like the Vandermonde matrix, hence the idea of using repmat and cumprod commands..
Thanks in advance !
0 个评论
采纳的回答
KSSV
2022-3-3
p = -(0:0.5:4) ; % power values
n = 5 ; % n value
ind1 = bsxfun(@plus, (1 : n), (0 : numel(p) - n).'); % make moving window indices
p = p(ind1) % power values
x = rand ; % your x
V = x.^p % what you wanted
更多回答(1 个)
John D'Errico
2022-3-3
The easiest way? Probably this line: (in R2016b or later)
x.^(((0:-1:1-n)' + (0:-1:1-n))/2)
If you want to use two lines of code, then it looks simpler yet.
N = (0:-1:1-n)/2;
x.^(N' + N)
Easrlier releases than R2016b would use bsxfun.
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Creating and Concatenating Matrices 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!