How to import csv deep learning dataset with labels to matlab?

14 次查看(过去 30 天)
Hello everyone,
I am trying to train a fully connected deep learning model.
I have my data set in a csv file so that each row represents a different signal.
The first 56 coloums represents the signal and the 2 last coloums represents the labels for the signals (there are two labels).
How can I import the cvs file in a way that i will be able to train a deep learning network with it?

采纳的回答

yanqi liu
yanqi liu 2022-3-7
yes,sir,may be read csv and reshape the data(:,1:56) into 4-D as train_input,data(:, 57:58) make to label vector as train_output
if possible,may be upload your csv to analysis
  3 个评论
yanqi liu
yanqi liu 2022-3-10
yes,sir,now we can use
data = load('Train Data.csv');
% make X and Y
X = data(:, 10 : 65);
Y = data(:, 66 : 67);
[~, Y] = max(Y');
X = X';
Y = Y';
% make cnn
num_class = length(unique(Y));
% make data shuffle
rand('seed', 0)
ind = randperm(size(X, 2));
X = X(:,ind);
Y = Y(ind);
Y = categorical(Y);
% Split Data
rate = 0.8;
ind_split = round(length(Y)*rate);
train_X = X(:,1:ind_split);
train_Y = Y(1:ind_split);
val_X = X(:,ind_split+1:end);
val_Y = Y(ind_split+1:end);
% Data Batch
XTrain=(reshape(train_X, [size(X,1),1,1,size(train_X,2)]));
XVal=(reshape(val_X', [size(X,1),1,1,size(val_X,2)]));
% CNN
layers = [imageInputLayer([size(X,1) 1 1])
convolution2dLayer([30 1],3,'Stride',1)
dropoutLayer
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2,'Padding',[0 0 0 1])
dropoutLayer
fullyConnectedLayer(num_class)
softmaxLayer
classificationLayer];
% Specify training options.
opts = trainingOptions('adam', ...
'MaxEpochs',200, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false, ...
'ValidationData',{XVal,val_Y},...
'ExecutionEnvironment', 'cpu', ...
'ValidationPatience',Inf);
% Train
yc = categorical(train_Y);
net1 = trainNetwork(XTrain,yc,layers,opts);
% Test
miniBatchSize = 27;
YPred = classify(net1,XVal, ...
'MiniBatchSize',miniBatchSize,...
'ExecutionEnvironment', 'cpu');
acc = mean(YPred(:) == val_Y(:))
figure
t = confusionchart(val_Y(:),YPred(:));
rami dishlo
rami dishlo 2022-3-15
Made some tweaking to make it all work but you really helped me.
Thank you

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Deep Learning Toolbox 的更多信息

产品


版本

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by