How to function 𝑎𝐴 + 𝑏𝐵 → 𝑝P in ODE89
8 次查看(过去 30 天)
显示 更早的评论
𝑎𝐴 + 𝑏𝐵 → 𝑝P
𝑑𝐴/𝑑𝑡 = −𝐾 ∗ 𝐴 ∗ 𝐵 𝑑𝐵/𝑑𝑡 = (𝑏/𝑎) ∗ (𝑑𝐴/𝑑𝑡) = −𝑌𝐵 ∗ (𝐾 ∗ 𝐴 ∗ 𝐵) 𝑑𝑃/𝑑𝑡 = −(𝑝/𝑎) ∗ (𝑑𝐴/𝑑𝑡) = 𝑌𝑃 ∗ (𝐾 ∗ 𝐴 ∗ 𝐵)
0 个评论
回答(1 个)
Davide Masiello
2022-3-7
编辑:Davide Masiello
2022-3-7
This should work:
clear,clc
tspan = [0,10];
y0 = [1,1,0];
[t,y] = ode89(@yourODEsystem,tspan,y0);
plot(t,y)
legend('A','B','P','Location','best')
function out = yourODEsystem(t,y)
% Coefficients
K = 1;
a = 2;
b = 1;
p = 0.5;
% Variables
A = y(1);
B = y(2);
P = y(3);
% Time derivatives
dAdt = -K*A*B;
dBdt = -(b/a)*K*A*B;
dPdt = (p/a)*K*A*B;
% Output
out = [dAdt;dBdt;dPdt];
end
Just replace you actual values of stoichiometric coefficients and kinetic constants.
6 个评论
Davide Masiello
2022-3-7
The function call in ode89 must be equal to the function name. Write this
clear,clc
tspan = [0,12];
y0=[0 1 3];
[t,y] = ode89(@DEdef,tspan,y0);
plot(t,y)
legend('CL','NOM','DBP','Location','best')
function Ddv_div = DEdef(t,y)
% Coefficients
K = 5E-5;
YB=1;
YP=0.15;
% Variables
A = y(1);
B = y(2);
P = y(3);
% Output
Ddv_div = [-K*A*B;-YB*(K*A*B);YP*(K*A*B)];
end
However, let me point out that if the initial concentration of one of the two reactants is zero (like in your case) you won't observe any change in the concentration of any of the compounds, since the reaction cannot occur.
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Ordinary Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!