Deconvolution of a polynomial and exponential function
8 次查看(过去 30 天)
显示 更早的评论
I got the same problem with following link:
I got trouble using Bayesian deconvolution
here I already got wt(z) and a'(z) with same one dimension size array
I have no idea how to got iterative.
If need my data, I will give my data. thanks a lot ><
4 个评论
高飞 支
2023-12-17
移动:John D'Errico
2023-12-17
I have the same trouble have you solved it?can you give me some advices?
Rui
2024-8-6
hello, larry liu
i am doing the same work as you did, did u use the Bayes iteration that you showed in the picture? cuz i try to deal with time constant in this way. It doesn't work..
回答(1 个)
Yash
2023-11-24
编辑:Yash
2023-11-24
Hi Larry,
I understand that you are facing issues while using the "deconv" function in MATLAB. "deconv(y,h)" deconvolves a vector "h" out of a vector "y" using polynomial long division, and returns the quotient "x" and remainder "r" such that "y = conv(x,h) + r".
Given that you already have a deconvolution function in your case, you may not need to use the "deconv" function. Instead, you can make an initial guess for "R(z)" and then obtain the approximation iteratively using a loop as follows:
n = length(df2);
w = Wzinstead';
a = df2';
R = randi(1000,n,1)/1000; % Initial guess, random values
nIter = 10;
for i=1:1:nIter
R1=R*(corr(w, a./(conv(w,R,'same'))));
R=R1;
end
Hope this helps you address the issue.
1 个评论
yicong
2024-9-6
% Define initial parameters
R1 = 6.3;
R2 = 6.3;
R3 = 6.3;
tau1 = 1e-5;
tau2 = 1e-2;
tau3 = 1e1;
% Define the time range
t_min = 1e-6;
t_max = 1e2;
% Calculate the number of interpolation points
num_points_per_decade = 20;
num_decades = log10(t_max) - log10(t_min);
num_points = round(num_points_per_decade * num_decades);
% Generate logarithmically spaced time points
t_interp = logspace(log10(t_min), log10(t_max), num_points);
z_interp = log(t_interp);
% Calculate the analytical model a(t)
a_t = R1 * (1 - exp(-exp(log(t_interp))/tau1)) + ...
R2 * (1 - exp(-exp(log(t_interp))/tau2)) + ...
R3 * (1 - exp(-exp(log(t_interp))/tau3));
% Use gradient to compute da/dz
da_dz = gradient(a_t, z_interp);
% Define W(z) = exp(z - exp(z))
W_z = exp(z_interp - exp(z_interp));
% Uncomment to normalize each column of W_z
% for l = 1:num_points
% W_z(:, l) = W_z(:, l) / sum(W_z(:, l)); % Normalize each column
% end
max_iterations = 100; % Maximum number of iterations
tolerance = 1e-6; % Convergence threshold
% Initialize Psi(z) with da/dz
Psi_z = da_dz';
w=W_z';
a=da_dz';
% Iterative correction
for iter = 1:1:max_iterations
R1=Psi_z*(corr(w, a./(conv(w,Psi_z,'same'))));
Psi_z=R1;
end
% Plot the results
figure;
subplot(3,1,1);
plot(z_interp, da_dz);
title('da/dz vs z');
xlabel('z');
ylabel('da/dz');
subplot(3,1,2);
plot(z_interp, W_z);
title('W(z)');
xlabel('z');
ylabel('W(z)');
subplot(3,1,3);
plot(z_interp, Psi_z);
title('\Psi(z) after Van Cittert Deconvolution');
xlabel('z');
ylabel('\Psi(z)');
-----------
I apply your code here while get wrong time constant result.
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Polynomials 的更多信息
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!