How can i generate an Hankel matrix of the lorenz system?

7 次查看(过去 30 天)
hi, i'd like to know how i can create the Hankel matrix of the lorenz system to perform it over a DMD algorithm. Thank all for the help!!
  1 个评论
ANTONINO BIANCUZZO
Update: I built the matrix and I performed the DMD algorithm, but, as my final step in this code, i could not to plot the system yet. I attach the code afterwards: I tried two way without result
clear all, close all, clc
Beta = [10; 28; 8/3]; % chaotic values
x0 = [0; 1; 20]; % initial condition
dt = 0.001;
tspan = dt:dt:9; % 9.000 time span
%% ode options
options = odeset('RelTol',1e-12,'AbsTol',1e-12*ones(1,3));
[t,x] = ode45(@(t,x)lorenz(t,x,Beta),tspan,x0,options);
%% hankel matrix
x = x.';
n = 6000; % number of rows
m = 3000; % number of columns
index1 = 1:n;
index2 = n:n+m-1;
X = []; Xprime=[];
for ir = 1:size(x,1)
% Hankel blocks ()
c = x(ir,index1).'; r = x(ir,index2);
H = hankel(c,r).';
c = x(ir,index1+1).'; r = x(ir,index2+1);
UH= hankel(c,r).';
X=[X,H]; Xprime=[Xprime,UH];
end
%% DMD of x
r = 50;
[U, S, V] = svd(X, 'econ');
r = min(r, size(U,2));
U_r = U(:, 1:r); % truncate to rank-r
S_r = S(1:r, 1:r);
V_r = V(:, 1:r);
Atilde = U_r' * Xprime * V_r / S_r; % low-rank dynamics
[W_r, D] = eig(Atilde);
Phi = Xprime * V_r / S_r * W_r; % DMD modes
%PhiP = U_r * V_r; % Projected DMD modes
lambda = diag(D); % discrete-time eigenvalues
omega = log(lambda)/dt; % continuous-time eigenvalues
% Compute DMD mode amplitudes b
x1 = X(:, 2);
b = Phi\x1; % equal to b = pinv(Phi)*x1
% DMD reconstruction
time_dynamics = zeros(r, length(t));
for iter = 1:length(t)
time_dynamics(:,iter) = (b.*exp(omega*t(iter)));
end
Xdmd = Phi * time_dynamics;
surfl(real(Xdmd).');
% DMD reconstruction from "Data-driven spectral analysis for coordinative structures in ..."
%rr = length(lambda) ;
%T = size(X,2) ;
%time_dmd = zeros(T-1,rr);
%for iter = 1:T-1
% for p = 1:rr
% time_dmd(iter,p) = b(p)*(exp(omega(p)*t(iter)));% time dynamics
% Xdm(:,iter,p) = real(Phi(:,p)*(b(p).*exp(omega(p)*t(iter))));% reconstruct
% end
%end
%X_dmd = sum(Xdm,3) ;

请先登录,再进行评论。

回答(1 个)

Nithin
Nithin 2023-11-3
Hi Antonino,
I understand that you want to create the Hankel matrix of the Lorenz system, perform it over a DMD algorithm and then plot it.
To implement this, kindly refer to the following code snippet:
clc;
clear all;
close all;
% Define the Lorenz system function
lorenz = @(t,x,Beta) [Beta(1)*(x(2)-x(1)); x(1)*(Beta(2)-x(3))-x(2); x(1)*x(2)-Beta(3)*x(3)];
Beta = [10; 28; 8/3]; % chaotic values
x0 = [0; 1; 20]; % initial condition
dt = 0.001;
tspan = dt:dt:9; % 9.000 time span
% ode options
options = odeset('RelTol',1e-12,'AbsTol',1e-12*ones(1,3));
[t,x] = ode45(@(t,x)lorenz(t,x,Beta),tspan,x0,options);
% hankel matrix
x = x.';
n = 6000; % number of rows
m = 3000; % number of columns
index1 = 1:n;
index2 = n:n+m-1;
X = []; Xprime=[];
for ir = 1:size(x,1)
% Hankel blocks ()
c = x(ir,index1).'; r = x(ir,index2);
H = hankel(c,r).';
c = x(ir,index1+1).'; r = x(ir,index2+1);
UH= hankel(c,r).';
X=[X,H]; Xprime=[Xprime,UH];
end
% DMD of x
r = 50;
[U, S, V] = svd(X, 'econ');
r = min(r, size(U,2));
U_r = U(:, 1:r); % truncate to rank-r
S_r = S(1:r, 1:r);
V_r = V(:, 1:r);
Atilde = U_r' * Xprime * V_r / S_r; % low-rank dynamics
[W_r, D] = eig(Atilde);
Phi = Xprime * V_r / S_r * W_r; % DMD modes
%PhiP = U_r * V_r; % Projected DMD modes
lambda = diag(D); % discrete-time eigenvalues
omega = log(lambda)/dt; % continuous-time eigenvalues
% Compute DMD mode amplitudes b
x1 = X(:, 2);
b = Phi\x1; % equal to b = pinv(Phi)*x1
% DMD reconstruction
time_dynamics = zeros(r, length(t));
for iter = 1:length(t)
time_dynamics(:,iter) = (b.*exp(omega*t(iter)));
end
Xdmd = Phi * time_dynamics;
% Plotting
figure;
surfl(real(Xdmd).');
xlabel('Time');
ylabel('DMD Mode');
zlabel('Amplitude');
title('DMD Reconstruction of Lorenz System');
For more information regarding “hankel” and “surf1”, kindly refer to the following MATLAB documentation:
I hope it helps.
Regards,
Nithin Kumar.

类别

Help CenterFile Exchange 中查找有关 Linear Algebra 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by