problem with the rank of controllability of a system

1 次查看(过去 30 天)
I have this system given below
A=[-3.87695312500000e-06,-0.000377259521484375,-1.54541015625000e-06,-2.47435565751281e-05,0;
-0.000383031005859375,-0.0438680297851563,-0.000171501464843750,-0.00287715774129662,0;
-1.68273925781250e-06,-0.000184232788085938,-3.42102050781250e-06,-1.20840625134364e-05,0;
-0.0288955468750000,-3.30957816406250,-0.0129358593750000,-0.452124041742296,0.00180860517844498;
0,0,0,119.959269051020,-1.23669349537147]
B=[-0.000202364643587302;-0.0235307725101629;-9.88292445427022e-05;-1.42966622638009;0];
C=eye(5);
D=zeros(5,1);
the rank of the controlablity matrix gives me the following matrix
co=ctrb(A,B);
>> co=[-0.000202364643587302,4.42531724232830e-05,-1.98625050253011e-05,1.70702903536278e-05,-2.16416261767110e-05;-0.0235307725101629,0.00514571834133656,-0.00230959374267344,0.00198491754360988,-0.00251646821219010;-9.88292445427022e-05,2.16119945020915e-05,-9.70028879196148e-06,8.33665147162803e-06,-1.05691645905590e-05;-1.42966622638009,0.724270529374834,-0.654670725177827,0.844370048676126,-1.19908774023253;0,-171.501715503486,298.978019307210,-448.277993397705,655.672492400879]
Rank (co) returns 4 where as it seems it should be 5?
  1 个评论
Kamran
Kamran 2022-3-25
For the given system, I can develop an lqr with following paratmers
R=diag([1e1,1e3,1e1,1e2,10]);
Q=1e2;
K=lqr(A,B,R,Q);
So I dont understand the rank of controlablity martix be 4 and not 5.

请先登录,再进行评论。

回答(1 个)

Sachin Lodhi
Sachin Lodhi 2023-12-19
编辑:Sachin Lodhi 2023-12-19
Hi Kamran,
The controllability matrix 'co' has a rank of 4 instead of 5 because the first row is just the third row multiplied by 2. It means that these two rows are linearly dependent.
In terms of rank, which measures the dimension of the row or column space (the maximum number of linearly independent rows or columns), having two linearly dependent rows reduces the rank of the matrix by at least one.
So, in matrix ‘co’ of [5 x 5] dimension, if two rows are the same, the number of linearly independent rows would be '5-1 = 4', and thus the rank of the matrix would be 4.
I hope this helps.
Best Regards,
Sachin

类别

Help CenterFile Exchange 中查找有关 Matrix Computations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by