Damping and natural frequency

42 次查看(过去 30 天)
Hello I'm trying to derive the damping ratio and the natural frequency of a second order system, but it appears that using the 'damp(sys)' function returns to me a different value from what I calculated... My transfer function is:
G = tf([18],[1 8 12.25])
I calculated the damping ratio and natural frequency using:
s^2+(2*zeta*w)s+w^2
The result was zeta = 8/7 and w is 3.5.
However I can't understand why damp(G) returns that the damping ratio is 1 when it's approximately 1.14 and additionally the w is inaccurate. If this is not the right function to use what is the right function that I could use to find damping ratio and frequency of the system? I'd greatly appreciate the help, thanks!

采纳的回答

Les Beckham
Les Beckham 2022-4-7
编辑:Les Beckham 2022-4-7
The damping ratio that you calculated is greater than one, meaning this system is overdamped (non-oscillatory).
It has two real poles:
p = roots([1 8 12.25])
p = 2×1
-5.9365 -2.0635
Thus, the denominator of your transfer function is not really in the form s^2 + (2*zeta*w)s + w^2
but rather (s + p(1)) * (s + p(2))
Let's check
p(1)*p(2)
ans = 12.2500
Damping ratios greater than one don't really have a physical meaning, so the damp() function doesn't report them that way, it just reports 1.0.
  2 个评论
Arcadius
Arcadius 2022-4-8
That makes much more sense thank you for the detailed explanation!
Sam Chak
Sam Chak 2022-4-9
@Arcadius, just to add a little bit more. If you look into the documentaion,
you will find the algorithm to compute the damping ratio of a continuous-time system is given by
where is the pole location. It is different from the textbook formula
p = roots([1 8 12.25])
zeta = - (p(1) + p(2))/(2*sqrt(p(1)*p(2)))
because, like what @Les Beckham has explained, the overdamped systems do not oscillate and they behave just like any first-order systems. For first-order systems, the natural frequency is registered as the absolute value of the pole location itself, and the damping ratio can be , depending on location of the pole.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Robust Control Toolbox 的更多信息

产品


版本

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by