How to fit a Gaussian curve by code?

27 次查看(过去 30 天)
Vivian Yu
Vivian Yu 2022-4-11
评论: Torsten 2022-4-11
Hi,
I want to fit a Gaussian curve by coding because I want to fit many type of 1-D data. I'm not using the "curve fitting" app.
However, when I write the code below, the result has something wrong.
I hope that the result should be the same as using "curve fitting" APP.
load('Gaussian.mat');
x0 = [0 0 0];
fitfunc = fittype('a.*exp(-((x-b)/c).^2)');
[fitted_curve,gof] = fit(x,y,fitfunc,'StartPoint',x0);
% Save the coeffiecient values for a,b,c and d in a vector
coeffvals = coeffvalues(fitted_curve);
% Plot results
figure(2)
plot(x,y,'r');
hold on
plot(x,fitted_curve(x),'k','LineWidth',1.5);
hold off
xlabel('Time');
ylabel('Voltage');
title('sinusoidal drive waveform & fitting curve');
set(gca,'fontsize',14);
  1 个评论
Torsten
Torsten 2022-4-11
编辑:Torsten 2022-4-11
Since your data look in no way like a Gaussian, I think the fit is the best MATLAB could do out of it.

请先登录,再进行评论。

回答(1 个)

Matt J
Matt J 2022-4-11
编辑:Matt J 2022-4-11
If we throw away the data values with y=0, then the remaining data fits a Gaussian quite well. I recommend downloading gaussfitn for the fit.
load Gaussian
keep=(y>0);
x=x(keep)/1e6;
y=y(keep);
[params,resid]=gaussfitn(x,y,{0,1,20,[]},{0,max(y),max(x)},{0,[],[]});
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
[A,mu,sig2]=deal(params{2:4})%parameters
A = 2.9709e+04
mu = 19.9730
sig2 = 6.9382
fun=@(x) A*exp( -0.5 * (x-mu).^2./sig2);
%Plot the fit
h=plot(x,fun(x),'-',x(1:20:end),y(1:20:end),'o');
h(1).LineWidth=2;
xlabel x; ylabel y; legend('Fit','Data Samples')

类别

Help CenterFile Exchange 中查找有关 Get Started with Curve Fitting Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by