Solving an initial value problem for a PDE
4 次查看(过去 30 天)
显示 更早的评论
Having the following initial value problem
with some mathematical computations we reach to an end that an implicit general solution of this pde can have the following form
if we had phi=e^(-x^2) for example,
I have been able to solve a similar problem to this but the genral solution was only a function of x and t, but here we have also u, so how can we possibly do that.
0 个评论
回答(1 个)
Torsten
2022-4-26
编辑:Torsten
2022-4-26
The method of characteristics gives the equations
dt/ds = 1, t(0) = 0
dx/ds = u, x(0) = x0
du/ds = 0, u(0) = phi(x0)
with solution
x = x0 + phi(x0) * t
Thus to get the solution u(x,t) in (x,t), you will have to solve
x - x0 - phi(x0)*t = 0
for x0.
The solution u(x,t) in (x,t) is then given by u(x,t) = phi(x0).
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Eigenvalue Problems 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!