Write a MATLAB script file to determine the displacements at points P, Q and R. Also determine the reactions at points S, T and U. (E = 200 GPa, ν = 0.3).

3 次查看(过去 30 天)

回答(1 个)

BhaTTa
BhaTTa 2025-3-11
Hey @Bernard P Rayen, To determine the displacements and reactions for a 2D isotropic plate with uniform thickness, you'll typically need to solve a finite element analysis (FEA) problem, you can use the Partial Differential Equation (PDE) Toolbox or write a custom script using basic principles.
Below is a simplified example of how you might set up a MATLAB script to solve such a problem using the PDE Toolbox. This will involve defining the geometry, material properties, boundary conditions, and loads.
% Define material properties
E = 200e9; % Young's modulus in Pascals (200 GPa)
nu = 0.3; % Poisson's ratio
% Create a PDE model for structural mechanics
model = createpde('structural', 'static-planestress');
% Define the geometry (a simple rectangular plate for this example)
L = 1.0; % Length of the plate in meters
W = 0.5; % Width of the plate in meters
% Geometry definition
R1 = [3, 4, 0, L, L, 0, 0, 0, W, W]';
gd = R1;
ns = char('R1');
ns = ns';
sf = 'R1';
g = decsg(gd, sf, ns);
geometryFromEdges(model, g);
% Assign material properties
structuralProperties(model, 'YoungsModulus', E, 'PoissonsRatio', nu);
% Define boundary conditions
% Fix one edge (e.g., at x = 0)
structuralBC(model, 'Edge', 1, 'Constraint', 'fixed');
% Apply a load (e.g., uniformly distributed load at the opposite edge)
pressure = 1e6; % Pressure in Pascals
structuralBoundaryLoad(model, 'Edge', 3, 'SurfaceTraction', [pressure; 0]);
% Generate mesh
generateMesh(model, 'Hmax', 0.05);
% Solve the PDE
result = solve(model);
% Extract displacements
u = result.Displacement;
% Display results
figure
pdeplot(model, 'XYData', u.Magnitude, 'ZData', u.Magnitude, 'ColorMap', 'jet', 'Deformation', u)
title('Displacement Magnitude')
xlabel('X (m)')
ylabel('Y (m)')
colorbar
% Extract and display displacements at specific points P, Q, R
% Note: Replace [x, y] with actual coordinates of P, Q, R
points = [0.25, 0.25; 0.75, 0.25; 0.5, 0.4];
for i = 1:size(points, 1)
[ux, uy] = interpolateDisplacement(result, points(i, :));
fprintf('Displacement at point (%f, %f): Ux = %e, Uy = %e\n', points(i, 1), points(i, 2), ux, uy);
end
Hope it helps.

类别

Help CenterFile Exchange 中查找有关 Get Started with MATLAB 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by