Reimann sum and numerical integration

18 次查看(过去 30 天)
I am trying to solve the functions below numerically using MATLAB
This is my code where I have used "integral" command to solve for the second integral, while I used Reimann sum to solve for the first. Take for example c=1/128.
x= -1/128:0.0001:1/128;
for j=1:length(x)
den= @(y) pi^2.* sqrt(1- (x(j)+y).^2) .* sqrt(1- y.^2);
fun= @(y) 1./den(y);
ymin= max(-0.999,-0.999-x(j));
ymax= min(0.999,0.999-x(j));
pdfX(j)=integral(fun,ymin,ymax);
end
sum1=0;
for j=1:length(omegat)
func1(j)=pdfX(j)*0.0001;
sum1=sum1+func1(j);
end
F=sum1;
Do you think it is correct? Are there any other ways to make it more accurate?
Thanks

采纳的回答

Star Strider
Star Strider 2015-1-25
I would likely use either trapz or cumtrapz to calculate ‘F’, but otherwise I see no problems.
  3 个评论
DM
DM 2015-1-25
Also did you notice I have 0.999 instead of 1, so as to avoid the singularity point, is that OK ?
Star Strider
Star Strider 2015-1-25
Personal preference, really. The trapz function is designed for numerical integration:
F = trapz(x, pdfX)
Avoiding the singularity is likely a good move. I doubt that substituting -0.999 would produce significant error. You might want to experiment with (1-1E-8) instead if you are curious.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Numerical Integration and Differentiation 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by