optimization of delayed differential equations (dde)

5 次查看(过去 30 天)
Hello,
I try to optimise (finding the parameter's value) in the system of dde, unfortunately I can't find any example how to do it. I used to optimization of ode using ode45 solver with lsqlin for instance. I will appreciate the help. The dde23 seems not to be working with lsqlin. I will appreciate any help.
  1 个评论
Torsten
Torsten 2022-5-9
编辑:Torsten 2022-5-9
Do you have a code for your model equations set up with dde23 ?
If yes, you should include it and tell which parameter(s) you are trying to optimize on the basis of which input data.

请先登录,再进行评论。

采纳的回答

Torsten
Torsten 2022-5-9
编辑:Torsten 2022-5-9
Make the best of it.
pTrue = [1 1 1 1 1 1 1 1 1];
time = 0:7;
Y = ...;
Am1=[1,1.1,1.4,0.7,0.8,1.6,2,1.5];
Bm1=[1.5,1.0,0.4,1.7,0.9,1.3,1.5,1.4];
Am=@(t)interp1(time,Am1,t)
Bm=@(t)interp1(time,Bm1,t)
p = lsqnonlin(@(p) Errors(p,time,Y,Am,Bm),0.8*pTrue)
function res = Errors(p,time,Y,Am,Bm)
lags=[1,2];
[T,SOL]=dde23(@(t,y,Z)ddefunEx(t,y,Z,p,Am,Bm), lags, [1,1,1,1], time);
res = Y-SOL;
res = res(:);
end
function dydt = ddefunEx(t,y,Z,p,Am,Bm)
ylag1 = Z(:,1);
ylag2 = Z(:,2);
E1p=y(1)
E2p=y(2)
A1=y(3)
B1=y(4)
n_A=p(1);%0.6;
n_B=p(2);%0.1;
KE1=p(3);%0.2;
KE2=p(4);%0.2;
Vp_A=p(5);%1.2;
Vp_B=p(6);%1.5;
alpha_p=p(7);%0.4;
kA=p(8);%0.4;
kB=p(9);%1.2;
%Auxiliary equations
ALPHA1=n_A*E1p*A1/(KE1*(1+A1))-A1;
ALPHA2=n_B*E2p*B1/(KE2*(1+B1))-B1;
dydt= [Vp_A*Am(t)-alpha_p*ylag1(1);
Vp_B*Bm(t)-alpha_p*ylag1(2);
kA*Am(t)-ylag2(3)-ALPHA1+ALPHA2;
kB*Bm(t)-ylag2(4)+ALPHA1-ALPHA2];
end
  4 个评论
Priya Verma
Priya Verma 2024-3-14
how to plot graphs between lags and variables for dde ?...please reply ..
Torsten
Torsten 2024-3-14
What do you mean by your question ? The line
[T,SOL]=dde23(@(t,y,Z)ddefunEx(t,y,Z,p,Am,Bm), lags, [1,1,1,1], time);
gives you a solution SOL at times T that you can plot. How do you think that the lags come into play ?

请先登录,再进行评论。

更多回答(1 个)

Malgorzata Wieteska
% I'm embedding simplified version of the system. I run it the function ddedunEx to get simulated data (Y) and then try to optimise for the values of the parameters against obtained earlier data.
function dydt = ddefunEx(t,y,Z,p)
%global p
ylag1 = Z(:,1);
ylag2 = Z(:,2);
time=0:7;
E1p=y(1)
E2p=y(2)
A1=y(3)
B1=y(4)
Am1=[1,1.1,1.4,0.7,0.8,1.6,2,1.5];
Bm1=[1.5,1.0,0.4,1.7,0.9,1.3,1.5,1.4];
Am=interp1(time,Am1,t)
Bm=interp1(time,Bm1,t)
n_A=p(1);%0.6;
n_B=p(2);%0.1;
KE1=p(3);%0.2;
KE2=p(4);%0.2;
Vp_A=p(5);%1.2;
Vp_B=p(6);%1.5;
alpha_p=p(7);%0.4;
kA=p(8);%0.4;
kB=p(9);%1.2;
%Auxiliary equations
ALPHA1=n_A*E1p*A1/(KE1*(1+A1))-A1;
ALPHA2=n_B*E2p*B1/(KE2*(1+B1))-B1;
dydt= [Vp_A*Am-alpha_p*ylag1(1);
Vp_B*Bm-alpha_p*ylag1(2);
kA*Am-ylag2(3)-ALPHA1+ALPHA2;
kB*Bm-ylag2(4)+ALPHA1-ALPHA2;];
end
%lags=[1,2];
%tspan=0:7;
%sol = dde23(@ddefunEx, lags, [1,1,1,1], tspan);
%figure(2)
%plot(sol.x,sol.y)
%%%%%%%%%%%%% Obtaining data
%Y=sol.y+0.05*randn(size(sol.x));
function res=Errors(p,Y)
tspan=0:7;;
x0=[4;1];
lags=[1,2];
[T,X]=dde23(@ddefunEx, lags, [1,1,1,1], tspan);
res1=(X(:,1)-Y(:,1));
res2=(X(:,2)-Y(:,2));
res3=(X(:,3)-Y(:,3));
res4=(X(:,4)-Y(:,4));
res=abs(res1)+abs(res2) +abs(res3)+abs(res4);
%pTrue=[0.6;0.1;0.2;0.2];
%[pOpt,resnorm,res,exitflag,~,lambda,J]=...
% lsqnonlin(@(p) Errors(p,Y),0.8*pTrue);

类别

Help CenterFile Exchange 中查找有关 Stochastic Differential Equation (SDE) Models 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by