Minimization problem with integral constraint
2 次查看(过去 30 天)
显示 更早的评论
Hello, I'm working with a 2D numerical density profile. . I have a set of radius a maximum radius R and I want to find the best fit to the data r. I know that I can use maximum likelihood or another method, but I have problems with the constraints for , because I require that
At first I tried with bins and adjusted the curve with cftool, but I need more precision. So I want to use minimization with that constraint.
Thank you so much.
采纳的回答
Matt J
2022-5-9
编辑:Matt J
2022-5-9
Perhaps you could reparametrize the curve as,
which automatically satisfies the constraint for any b and c. Moreoever, since this form has only two unknown parameters, it should be relatively easy to do a parameter sweep to find at least a good initial guess of b and c.
7 个评论
Esteban Garcia
2022-5-9
编辑:Esteban Garcia
2022-5-9
Hello Matt, your answer was extremely helpful!.. I already did the sweep and found c=-1.295 and b=0.76 and it makes sense.
Is there a method to get the minimization faster?, because I need to apply it to a lot of galaxy clusters. I've seen and tried some methods in the documentation but none of them seemed to accept variables as exponents..
For example, for the first galaxy I minimized this function for a and b
F=-(b^(706*c)*(1/b^2 + 1)^c*(4/b^2 + 1)^(2*c)*(1/(4*b^2) + 1)^(2*c)*(9/b^2 + 1)^(2*c)*(9/(4*b^2) + 1)^c*(1/(16*b^2) + 1)^c*(9/(16*b^2) + 1)^(5*c)*(25/(4*b^2) + 1)^c*(9/(25*b^2) + 1)^(4*c)*(16/(25*b^2) + 1)^(2*c)*(25/(16*b^2) + 1)^c*(49/(16*b^2) + 1)^c*(49/(25*b^2) + 1)^c*(64/(25*b^2) + 1)^(2*c)*(81/(25*b^2) + 1)^c*(9/(100*b^2) + 1)^c*(121/(16*b^2) + 1)^c*(121/(25*b^2) + 1)^(3*c)*(49/(100*b^2) + 1)^(3*c)*(169/(16*b^2) + 1)^(2*c)*(169/(25*b^2) + 1)^c*(121/(100*b^2) + 1)^c*(169/(100*b^2) + 1)^(2*c)*(324/(25*b^2) + 1)^c*(9/(400*b^2) + 1)^c*(49/(400*b^2) + 1)^c*(361/(100*b^2) + 1)^(5*c)*(81/(400*b^2) + 1)^(2*c)*(121/(400*b^2) + 1)^(4*c)*(169/(400*b^2) + 1)^(3*c)*(4/(625*b^2) + 1)^c*(529/(100*b^2) + 1)^(3*c)*(9/(625*b^2) + 1)^(2*c)*(16/(625*b^2) + 1)^c*(36/(625*b^2) + 1)^c*(49/(625*b^2) + 1)^c*(64/(625*b^2) + 1)^(2*c)*(289/(400*b^2) + 1)^(3*c)*(81/(625*b^2) + 1)^c*(121/(625*b^2) + 1)^c*(361/(400*b^2) + 1)^c*(144/(625*b^2) + 1)^(3*c)*(196/(625*b^2) + 1)^(2*c)*(729/(100*b^2) + 1)^c*(441/(400*b^2) + 1)^c*(256/(625*b^2) + 1)^(2*c)*(289/(625*b^2) + 1)^(2*c)*(529/(400*b^2) + 1)^(2*c)*(324/(625*b^2) + 1)^(2*c)*(361/(625*b^2) + 1)^c*(961/(100*b^2) + 1)^c*(441/(625*b^2) + 1)^(4*c)*(484/(625*b^2) + 1)^c*(529/(625*b^2) + 1)^(3*c)*(729/(625*b^2) + 1)^c*(961/(400*b^2) + 1)^(2*c)*(784/(625*b^2) + 1)^(2*c)*(841/(625*b^2) + 1)^(2*c)*(1089/(400*b^2) + 1)^(2*c)*(1024/(625*b^2) + 1)^(3*c)*(1369/(400*b^2) + 1)^c*(1156/(625*b^2) + 1)^(2*c)*(1296/(625*b^2) + 1)^(4*c)*(1521/(400*b^2) + 1)^c*(1521/(625*b^2) + 1)^c*(1849/(400*b^2) + 1)^c*(1764/(625*b^2) + 1)^(2*c)*(1849/(625*b^2) + 1)^c*(1/(2500*b^2) + 1)^c*(9/(2500*b^2) + 1)^c*(49/(2500*b^2) + 1)^(2*c)*(1936/(625*b^2) + 1)^c*(121/(2500*b^2) + 1)^c*(169/(2500*b^2) + 1)^c*(2116/(625*b^2) + 1)^(3*c)*(289/(2500*b^2) + 1)^(2*c)*(2401/(400*b^2) + 1)^c*(361/(2500*b^2) + 1)^c*(2304/(625*b^2) + 1)^c*(441/(2500*b^2) + 1)^c*(2601/(400*b^2) + 1)^c*(2401/(625*b^2) + 1)^(3*c)*(529/(2500*b^2) + 1)^c*(2601/(625*b^2) + 1)^c*(729/(2500*b^2) + 1)^(4*c)*(2704/(625*b^2) + 1)^(2*c)*(841/(2500*b^2) + 1)^(2*c)*(961/(2500*b^2) + 1)^c*(2916/(625*b^2) + 1)^(3*c)*(1089/(2500*b^2) + 1)^(4*c)*(3249/(400*b^2) + 1)^c*(1369/(2500*b^2) + 1)^c*(3249/(625*b^2) + 1)^(2*c)*(1521/(2500*b^2) + 1)^(3*c)*(3481/(625*b^2) + 1)^(3*c)*(1849/(2500*b^2) + 1)^c*(3844/(625*b^2) + 1)^c*(4096/(625*b^2) + 1)^c*(4356/(625*b^2) + 1)^c*(2601/(2500*b^2) + 1)^c*(4489/(625*b^2) + 1)^c*(4624/(625*b^2) + 1)^c*(5041/(625*b^2) + 1)^c*(3249/(2500*b^2) + 1)^c*(5184/(625*b^2) + 1)^c*(3481/(2500*b^2) + 1)^c*(3721/(2500*b^2) + 1)^c*(4489/(2500*b^2) + 1)^c*(5041/(2500*b^2) + 1)^(2*c)*(5329/(2500*b^2) + 1)^c*(7396/(625*b^2) + 1)^(2*c)*(5929/(2500*b^2) + 1)^c*(1/(10000*b^2) + 1)^c*(9/(10000*b^2) + 1)^(2*c)*(7569/(2500*b^2) + 1)^c*(81/(10000*b^2) + 1)^(2*c)*(289/(10000*b^2) + 1)^(2*c)*(361/(10000*b^2) + 1)^c*(529/(10000*b^2) + 1)^c*(961/(10000*b^2) + 1)^(3*c)*(1089/(10000*b^2) + 1)^(2*c)*(8649/(2500*b^2) + 1)^(2*c)*(1369/(10000*b^2) + 1)^c*(1521/(10000*b^2) + 1)^(3*c)*(1681/(10000*b^2) + 1)^c*(1849/(10000*b^2) + 1)^c*(9409/(2500*b^2) + 1)^(3*c)*(2209/(10000*b^2) + 1)^(4*c)*(9801/(2500*b^2) + 1)^c*(2401/(10000*b^2) + 1)^(2*c)*(2601/(10000*b^2) + 1)^(2*c)*(10201/(2500*b^2) + 1)^c*(2809/(10000*b^2) + 1)^(5*c)*(10609/(2500*b^2) + 1)^(2*c)*(3481/(10000*b^2) + 1)^c*(3721/(10000*b^2) + 1)^c*(3969/(10000*b^2) + 1)^(4*c)*(11881/(2500*b^2) + 1)^(6*c)*(4489/(10000*b^2) + 1)^c*(4761/(10000*b^2) + 1)^c*(12321/(2500*b^2) + 1)^(2*c)*(5041/(10000*b^2) + 1)^c*(12769/(2500*b^2) + 1)^(2*c)*(5329/(10000*b^2) + 1)^c*(13689/(2500*b^2) + 1)^c*(6561/(10000*b^2) + 1)^c*(6889/(10000*b^2) + 1)^c*(14641/(2500*b^2) + 1)^c*(7569/(10000*b^2) + 1)^(3*c)*(7921/(10000*b^2) + 1)^(3*c)*(8649/(10000*b^2) + 1)^c*(16641/(2500*b^2) + 1)^(2*c)*(9409/(10000*b^2) + 1)^c*(17161/(2500*b^2) + 1)^c*(17689/(2500*b^2) + 1)^c*(10201/(10000*b^2) + 1)^(2*c)*(10609/(10000*b^2) + 1)^(2*c)*(11449/(10000*b^2) + 1)^c*(11881/(10000*b^2) + 1)^c*(12321/(10000*b^2) + 1)^c*(12769/(10000*b^2) + 1)^c*(20449/(2500*b^2) + 1)^c*(13689/(10000*b^2) + 1)^c*(14161/(10000*b^2) + 1)^(3*c)*(14641/(10000*b^2) + 1)^(2*c)*(22801/(2500*b^2) + 1)^c*(16129/(10000*b^2) + 1)^c*(16641/(10000*b^2) + 1)^(2*c)*(17161/(10000*b^2) + 1)^(3*c)*(17689/(10000*b^2) + 1)^c*(19321/(10000*b^2) + 1)^c*(19881/(10000*b^2) + 1)^c*(20449/(10000*b^2) + 1)^(2*c)*(28561/(2500*b^2) + 1)^c*(21609/(10000*b^2) + 1)^(2*c)*(23409/(10000*b^2) + 1)^c*(24649/(10000*b^2) + 1)^c*(25281/(10000*b^2) + 1)^(3*c)*(25921/(10000*b^2) + 1)^c*(26569/(10000*b^2) + 1)^c*(27889/(10000*b^2) + 1)^(2*c)*(28561/(10000*b^2) + 1)^c*(29241/(10000*b^2) + 1)^c*(31329/(10000*b^2) + 1)^c*(32041/(10000*b^2) + 1)^c*(33489/(10000*b^2) + 1)^c*(35721/(10000*b^2) + 1)^c*(36481/(10000*b^2) + 1)^c*(37249/(10000*b^2) + 1)^c*(39601/(10000*b^2) + 1)^c*(40401/(10000*b^2) + 1)^(2*c)*(41209/(10000*b^2) + 1)^c*(42849/(10000*b^2) + 1)^(2*c)*(43681/(10000*b^2) + 1)^c*(44521/(10000*b^2) + 1)^c*(49729/(10000*b^2) + 1)^c*(51529/(10000*b^2) + 1)^(3*c)*(56169/(10000*b^2) + 1)^c*(57121/(10000*b^2) + 1)^c*(58081/(10000*b^2) + 1)^c*(59049/(10000*b^2) + 1)^(2*c)*(61009/(10000*b^2) + 1)^c*(63001/(10000*b^2) + 1)^(2*c)*(66049/(10000*b^2) + 1)^c*(69169/(10000*b^2) + 1)^c*(72361/(10000*b^2) + 1)^c*(73441/(10000*b^2) + 1)^c*(77841/(10000*b^2) + 1)^c*(80089/(10000*b^2) + 1)^(3*c)*(85849/(10000*b^2) + 1)^c*(95481/(10000*b^2) + 1)^c*(114921/(10000*b^2) + 1)^c*(116281/(10000*b^2) + 1)^c*(124609/(10000*b^2) + 1)^c*(137641/(10000*b^2) + 1)^c*(c + 1)^353)/(pi^353*((b^2 + 968562431735785/70368744177664)^(c + 1) - b^(2*c + 2))^353)
Again, thank you!
Esteban Garcia
2022-5-9
编辑:Esteban Garcia
2022-5-9
I did this:
%F is defined like sym
A=0;
for b=0.1:0.01:2
for c=-3.005:0.01:-0.015
n=vpa(subs(F),10);
if n<A
A=n;
B=b;
C=c;
end
end
end
So, you would recommend me to save b^2,100*b^2, etc. into variables and plug them in F?.
Matt J
2022-5-10
I would recommend implementing it as written in my original answer. No need to have the Symbolic Math Toolbox involved.
Esteban Garcia
2022-5-10
编辑:Esteban Garcia
2022-5-10
Hello Matt, thank you for answer
I see, but evaluating directly didn't give me a result. When I evaluated the function into b=0.1:0.01:2, c=-3.005:0.01:-0.015
-(b^(706*c)*(1/b^2 + 1)^c*(4/b^2 + 1)^(2*c)*(1/(4*b^2) + 1)^(2*c)*(9/b^2 + 1)^(2*c)*(9/(4*b^2) + 1)^c*(1/(16*b^2) + 1)^c*(9/(16*b^2) + 1)^(5*c)*(25/(4*b^2) + 1)^c*(9/(25*b^2) + 1)^(4*c)*(16/(25*b^2) + 1)^(2*c)*(25/(16*b^2) + 1)^c*(49/(16*b^2) + 1)^c*(49/(25*b^2) + 1)^c*(64/(25*b^2) + 1)^(2*c)*(81/(25*b^2) + 1)^c*(9/(100*b^2) + 1)^c*(121/(16*b^2) + 1)^c*(121/(25*b^2) + 1)^(3*c)*(49/(100*b^2) + 1)^(3*c)*(169/(16*b^2) + 1)^(2*c)*(169/(25*b^2) + 1)^c*(121/(100*b^2) + 1)^c*(169/(100*b^2) + 1)^(2*c)*(324/(25*b^2) + 1)^c*(9/(400*b^2) + 1)^c*(49/(400*b^2) + 1)^c*(361/(100*b^2) + 1)^(5*c)*(81/(400*b^2) + 1)^(2*c)*(121/(400*b^2) + 1)^(4*c)*(169/(400*b^2) + 1)^(3*c)*(4/(625*b^2) + 1)^c*(529/(100*b^2) + 1)^(3*c)*(9/(625*b^2) + 1)^(2*c)*(16/(625*b^2) + 1)^c*(36/(625*b^2) + 1)^c*(49/(625*b^2) + 1)^c*(64/(625*b^2) + 1)^(2*c)*(289/(400*b^2) + 1)^(3*c)*(81/(625*b^2) + 1)^c*(121/(625*b^2) + 1)^c*(361/(400*b^2) + 1)^c*(144/(625*b^2) + 1)^(3*c)*(196/(625*b^2) + 1)^(2*c)*(729/(100*b^2) + 1)^c*(441/(400*b^2) + 1)^c*(256/(625*b^2) + 1)^(2*c)*(289/(625*b^2) + 1)^(2*c)*(529/(400*b^2) + 1)^(2*c)*(324/(625*b^2) + 1)^(2*c)*(361/(625*b^2) + 1)^c*(961/(100*b^2) + 1)^c*(441/(625*b^2) + 1)^(4*c)*(484/(625*b^2) + 1)^c*(529/(625*b^2) + 1)^(3*c)*(729/(625*b^2) + 1)^c*(961/(400*b^2) + 1)^(2*c)*(784/(625*b^2) + 1)^(2*c)*(841/(625*b^2) + 1)^(2*c)*(1089/(400*b^2) + 1)^(2*c)*(1024/(625*b^2) + 1)^(3*c)*(1369/(400*b^2) + 1)^c*(1156/(625*b^2) + 1)^(2*c)*(1296/(625*b^2) + 1)^(4*c)*(1521/(400*b^2) + 1)^c*(1521/(625*b^2) + 1)^c*(1849/(400*b^2) + 1)^c*(1764/(625*b^2) + 1)^(2*c)*(1849/(625*b^2) + 1)^c*(1/(2500*b^2) + 1)^c*(9/(2500*b^2) + 1)^c*(49/(2500*b^2) + 1)^(2*c)*(1936/(625*b^2) + 1)^c*(121/(2500*b^2) + 1)^c*(169/(2500*b^2) + 1)^c*(2116/(625*b^2) + 1)^(3*c)*(289/(2500*b^2) + 1)^(2*c)*(2401/(400*b^2) + 1)^c*(361/(2500*b^2) + 1)^c*(2304/(625*b^2) + 1)^c*(441/(2500*b^2) + 1)^c*(2601/(400*b^2) + 1)^c*(2401/(625*b^2) + 1)^(3*c)*(529/(2500*b^2) + 1)^c*(2601/(625*b^2) + 1)^c*(729/(2500*b^2) + 1)^(4*c)*(2704/(625*b^2) + 1)^(2*c)*(841/(2500*b^2) + 1)^(2*c)*(961/(2500*b^2) + 1)^c*(2916/(625*b^2) + 1)^(3*c)*(1089/(2500*b^2) + 1)^(4*c)*(3249/(400*b^2) + 1)^c*(1369/(2500*b^2) + 1)^c*(3249/(625*b^2) + 1)^(2*c)*(1521/(2500*b^2) + 1)^(3*c)*(3481/(625*b^2) + 1)^(3*c)*(1849/(2500*b^2) + 1)^c*(3844/(625*b^2) + 1)^c*(4096/(625*b^2) + 1)^c*(4356/(625*b^2) + 1)^c*(2601/(2500*b^2) + 1)^c*(4489/(625*b^2) + 1)^c*(4624/(625*b^2) + 1)^c*(5041/(625*b^2) + 1)^c*(3249/(2500*b^2) + 1)^c*(5184/(625*b^2) + 1)^c*(3481/(2500*b^2) + 1)^c*(3721/(2500*b^2) + 1)^c*(4489/(2500*b^2) + 1)^c*(5041/(2500*b^2) + 1)^(2*c)*(5329/(2500*b^2) + 1)^c*(7396/(625*b^2) + 1)^(2*c)*(5929/(2500*b^2) + 1)^c*(1/(10000*b^2) + 1)^c*(9/(10000*b^2) + 1)^(2*c)*(7569/(2500*b^2) + 1)^c*(81/(10000*b^2) + 1)^(2*c)*(289/(10000*b^2) + 1)^(2*c)*(361/(10000*b^2) + 1)^c*(529/(10000*b^2) + 1)^c*(961/(10000*b^2) + 1)^(3*c)*(1089/(10000*b^2) + 1)^(2*c)*(8649/(2500*b^2) + 1)^(2*c)*(1369/(10000*b^2) + 1)^c*(1521/(10000*b^2) + 1)^(3*c)*(1681/(10000*b^2) + 1)^c*(1849/(10000*b^2) + 1)^c*(9409/(2500*b^2) + 1)^(3*c)*(2209/(10000*b^2) + 1)^(4*c)*(9801/(2500*b^2) + 1)^c*(2401/(10000*b^2) + 1)^(2*c)*(2601/(10000*b^2) + 1)^(2*c)*(10201/(2500*b^2) + 1)^c*(2809/(10000*b^2) + 1)^(5*c)*(10609/(2500*b^2) + 1)^(2*c)*(3481/(10000*b^2) + 1)^c*(3721/(10000*b^2) + 1)^c*(3969/(10000*b^2) + 1)^(4*c)*(11881/(2500*b^2) + 1)^(6*c)*(4489/(10000*b^2) + 1)^c*(4761/(10000*b^2) + 1)^c*(12321/(2500*b^2) + 1)^(2*c)*(5041/(10000*b^2) + 1)^c*(12769/(2500*b^2) + 1)^(2*c)*(5329/(10000*b^2) + 1)^c*(13689/(2500*b^2) + 1)^c*(6561/(10000*b^2) + 1)^c*(6889/(10000*b^2) + 1)^c*(14641/(2500*b^2) + 1)^c*(7569/(10000*b^2) + 1)^(3*c)*(7921/(10000*b^2) + 1)^(3*c)*(8649/(10000*b^2) + 1)^c*(16641/(2500*b^2) + 1)^(2*c)*(9409/(10000*b^2) + 1)^c*(17161/(2500*b^2) + 1)^c*(17689/(2500*b^2) + 1)^c*(10201/(10000*b^2) + 1)^(2*c)*(10609/(10000*b^2) + 1)^(2*c)*(11449/(10000*b^2) + 1)^c*(11881/(10000*b^2) + 1)^c*(12321/(10000*b^2) + 1)^c*(12769/(10000*b^2) + 1)^c*(20449/(2500*b^2) + 1)^c*(13689/(10000*b^2) + 1)^c*(14161/(10000*b^2) + 1)^(3*c)*(14641/(10000*b^2) + 1)^(2*c)*(22801/(2500*b^2) + 1)^c*(16129/(10000*b^2) + 1)^c*(16641/(10000*b^2) + 1)^(2*c)*(17161/(10000*b^2) + 1)^(3*c)*(17689/(10000*b^2) + 1)^c*(19321/(10000*b^2) + 1)^c*(19881/(10000*b^2) + 1)^c*(20449/(10000*b^2) + 1)^(2*c)*(28561/(2500*b^2) + 1)^c*(21609/(10000*b^2) + 1)^(2*c)*(23409/(10000*b^2) + 1)^c*(24649/(10000*b^2) + 1)^c*(25281/(10000*b^2) + 1)^(3*c)*(25921/(10000*b^2) + 1)^c*(26569/(10000*b^2) + 1)^c*(27889/(10000*b^2) + 1)^(2*c)*(28561/(10000*b^2) + 1)^c*(29241/(10000*b^2) + 1)^c*(31329/(10000*b^2) + 1)^c*(32041/(10000*b^2) + 1)^c*(33489/(10000*b^2) + 1)^c*(35721/(10000*b^2) + 1)^c*(36481/(10000*b^2) + 1)^c*(37249/(10000*b^2) + 1)^c*(39601/(10000*b^2) + 1)^c*(40401/(10000*b^2) + 1)^(2*c)*(41209/(10000*b^2) + 1)^c*(42849/(10000*b^2) + 1)^(2*c)*(43681/(10000*b^2) + 1)^c*(44521/(10000*b^2) + 1)^c*(49729/(10000*b^2) + 1)^c*(51529/(10000*b^2) + 1)^(3*c)*(56169/(10000*b^2) + 1)^c*(57121/(10000*b^2) + 1)^c*(58081/(10000*b^2) + 1)^c*(59049/(10000*b^2) + 1)^(2*c)*(61009/(10000*b^2) + 1)^c*(63001/(10000*b^2) + 1)^(2*c)*(66049/(10000*b^2) + 1)^c*(69169/(10000*b^2) + 1)^c*(72361/(10000*b^2) + 1)^c*(73441/(10000*b^2) + 1)^c*(77841/(10000*b^2) + 1)^c*(80089/(10000*b^2) + 1)^(3*c)*(85849/(10000*b^2) + 1)^c*(95481/(10000*b^2) + 1)^c*(114921/(10000*b^2) + 1)^c*(116281/(10000*b^2) + 1)^c*(124609/(10000*b^2) + 1)^c*(137641/(10000*b^2) + 1)^c*(c + 1)^353)/(pi^353*((b^2 + 968562431735785/70368744177664)^(c + 1) - b^(2*c + 2))^353)
or
vpa(-(b^(706*c)*(1/b^2 + 1)^c*(4/b^2 + 1)^(2*c)*(1/(4*b^2) + 1)^(2*c)*(9/b^2 + 1)^(2*c)*(9/(4*b^2) + 1)^c*(1/(16*b^2) + 1)^c*(9/(16*b^2) + 1)^(5*c)*(25/(4*b^2) + 1)^c*(9/(25*b^2) + 1)^(4*c)*(16/(25*b^2) + 1)^(2*c)*(25/(16*b^2) + 1)^c*(49/(16*b^2) + 1)^c*(49/(25*b^2) + 1)^c*(64/(25*b^2) + 1)^(2*c)*(81/(25*b^2) + 1)^c*(9/(100*b^2) + 1)^c*(121/(16*b^2) + 1)^c*(121/(25*b^2) + 1)^(3*c)*(49/(100*b^2) + 1)^(3*c)*(169/(16*b^2) + 1)^(2*c)*(169/(25*b^2) + 1)^c*(121/(100*b^2) + 1)^c*(169/(100*b^2) + 1)^(2*c)*(324/(25*b^2) + 1)^c*(9/(400*b^2) + 1)^c*(49/(400*b^2) + 1)^c*(361/(100*b^2) + 1)^(5*c)*(81/(400*b^2) + 1)^(2*c)*(121/(400*b^2) + 1)^(4*c)*(169/(400*b^2) + 1)^(3*c)*(4/(625*b^2) + 1)^c*(529/(100*b^2) + 1)^(3*c)*(9/(625*b^2) + 1)^(2*c)*(16/(625*b^2) + 1)^c*(36/(625*b^2) + 1)^c*(49/(625*b^2) + 1)^c*(64/(625*b^2) + 1)^(2*c)*(289/(400*b^2) + 1)^(3*c)*(81/(625*b^2) + 1)^c*(121/(625*b^2) + 1)^c*(361/(400*b^2) + 1)^c*(144/(625*b^2) + 1)^(3*c)*(196/(625*b^2) + 1)^(2*c)*(729/(100*b^2) + 1)^c*(441/(400*b^2) + 1)^c*(256/(625*b^2) + 1)^(2*c)*(289/(625*b^2) + 1)^(2*c)*(529/(400*b^2) + 1)^(2*c)*(324/(625*b^2) + 1)^(2*c)*(361/(625*b^2) + 1)^c*(961/(100*b^2) + 1)^c*(441/(625*b^2) + 1)^(4*c)*(484/(625*b^2) + 1)^c*(529/(625*b^2) + 1)^(3*c)*(729/(625*b^2) + 1)^c*(961/(400*b^2) + 1)^(2*c)*(784/(625*b^2) + 1)^(2*c)*(841/(625*b^2) + 1)^(2*c)*(1089/(400*b^2) + 1)^(2*c)*(1024/(625*b^2) + 1)^(3*c)*(1369/(400*b^2) + 1)^c*(1156/(625*b^2) + 1)^(2*c)*(1296/(625*b^2) + 1)^(4*c)*(1521/(400*b^2) + 1)^c*(1521/(625*b^2) + 1)^c*(1849/(400*b^2) + 1)^c*(1764/(625*b^2) + 1)^(2*c)*(1849/(625*b^2) + 1)^c*(1/(2500*b^2) + 1)^c*(9/(2500*b^2) + 1)^c*(49/(2500*b^2) + 1)^(2*c)*(1936/(625*b^2) + 1)^c*(121/(2500*b^2) + 1)^c*(169/(2500*b^2) + 1)^c*(2116/(625*b^2) + 1)^(3*c)*(289/(2500*b^2) + 1)^(2*c)*(2401/(400*b^2) + 1)^c*(361/(2500*b^2) + 1)^c*(2304/(625*b^2) + 1)^c*(441/(2500*b^2) + 1)^c*(2601/(400*b^2) + 1)^c*(2401/(625*b^2) + 1)^(3*c)*(529/(2500*b^2) + 1)^c*(2601/(625*b^2) + 1)^c*(729/(2500*b^2) + 1)^(4*c)*(2704/(625*b^2) + 1)^(2*c)*(841/(2500*b^2) + 1)^(2*c)*(961/(2500*b^2) + 1)^c*(2916/(625*b^2) + 1)^(3*c)*(1089/(2500*b^2) + 1)^(4*c)*(3249/(400*b^2) + 1)^c*(1369/(2500*b^2) + 1)^c*(3249/(625*b^2) + 1)^(2*c)*(1521/(2500*b^2) + 1)^(3*c)*(3481/(625*b^2) + 1)^(3*c)*(1849/(2500*b^2) + 1)^c*(3844/(625*b^2) + 1)^c*(4096/(625*b^2) + 1)^c*(4356/(625*b^2) + 1)^c*(2601/(2500*b^2) + 1)^c*(4489/(625*b^2) + 1)^c*(4624/(625*b^2) + 1)^c*(5041/(625*b^2) + 1)^c*(3249/(2500*b^2) + 1)^c*(5184/(625*b^2) + 1)^c*(3481/(2500*b^2) + 1)^c*(3721/(2500*b^2) + 1)^c*(4489/(2500*b^2) + 1)^c*(5041/(2500*b^2) + 1)^(2*c)*(5329/(2500*b^2) + 1)^c*(7396/(625*b^2) + 1)^(2*c)*(5929/(2500*b^2) + 1)^c*(1/(10000*b^2) + 1)^c*(9/(10000*b^2) + 1)^(2*c)*(7569/(2500*b^2) + 1)^c*(81/(10000*b^2) + 1)^(2*c)*(289/(10000*b^2) + 1)^(2*c)*(361/(10000*b^2) + 1)^c*(529/(10000*b^2) + 1)^c*(961/(10000*b^2) + 1)^(3*c)*(1089/(10000*b^2) + 1)^(2*c)*(8649/(2500*b^2) + 1)^(2*c)*(1369/(10000*b^2) + 1)^c*(1521/(10000*b^2) + 1)^(3*c)*(1681/(10000*b^2) + 1)^c*(1849/(10000*b^2) + 1)^c*(9409/(2500*b^2) + 1)^(3*c)*(2209/(10000*b^2) + 1)^(4*c)*(9801/(2500*b^2) + 1)^c*(2401/(10000*b^2) + 1)^(2*c)*(2601/(10000*b^2) + 1)^(2*c)*(10201/(2500*b^2) + 1)^c*(2809/(10000*b^2) + 1)^(5*c)*(10609/(2500*b^2) + 1)^(2*c)*(3481/(10000*b^2) + 1)^c*(3721/(10000*b^2) + 1)^c*(3969/(10000*b^2) + 1)^(4*c)*(11881/(2500*b^2) + 1)^(6*c)*(4489/(10000*b^2) + 1)^c*(4761/(10000*b^2) + 1)^c*(12321/(2500*b^2) + 1)^(2*c)*(5041/(10000*b^2) + 1)^c*(12769/(2500*b^2) + 1)^(2*c)*(5329/(10000*b^2) + 1)^c*(13689/(2500*b^2) + 1)^c*(6561/(10000*b^2) + 1)^c*(6889/(10000*b^2) + 1)^c*(14641/(2500*b^2) + 1)^c*(7569/(10000*b^2) + 1)^(3*c)*(7921/(10000*b^2) + 1)^(3*c)*(8649/(10000*b^2) + 1)^c*(16641/(2500*b^2) + 1)^(2*c)*(9409/(10000*b^2) + 1)^c*(17161/(2500*b^2) + 1)^c*(17689/(2500*b^2) + 1)^c*(10201/(10000*b^2) + 1)^(2*c)*(10609/(10000*b^2) + 1)^(2*c)*(11449/(10000*b^2) + 1)^c*(11881/(10000*b^2) + 1)^c*(12321/(10000*b^2) + 1)^c*(12769/(10000*b^2) + 1)^c*(20449/(2500*b^2) + 1)^c*(13689/(10000*b^2) + 1)^c*(14161/(10000*b^2) + 1)^(3*c)*(14641/(10000*b^2) + 1)^(2*c)*(22801/(2500*b^2) + 1)^c*(16129/(10000*b^2) + 1)^c*(16641/(10000*b^2) + 1)^(2*c)*(17161/(10000*b^2) + 1)^(3*c)*(17689/(10000*b^2) + 1)^c*(19321/(10000*b^2) + 1)^c*(19881/(10000*b^2) + 1)^c*(20449/(10000*b^2) + 1)^(2*c)*(28561/(2500*b^2) + 1)^c*(21609/(10000*b^2) + 1)^(2*c)*(23409/(10000*b^2) + 1)^c*(24649/(10000*b^2) + 1)^c*(25281/(10000*b^2) + 1)^(3*c)*(25921/(10000*b^2) + 1)^c*(26569/(10000*b^2) + 1)^c*(27889/(10000*b^2) + 1)^(2*c)*(28561/(10000*b^2) + 1)^c*(29241/(10000*b^2) + 1)^c*(31329/(10000*b^2) + 1)^c*(32041/(10000*b^2) + 1)^c*(33489/(10000*b^2) + 1)^c*(35721/(10000*b^2) + 1)^c*(36481/(10000*b^2) + 1)^c*(37249/(10000*b^2) + 1)^c*(39601/(10000*b^2) + 1)^c*(40401/(10000*b^2) + 1)^(2*c)*(41209/(10000*b^2) + 1)^c*(42849/(10000*b^2) + 1)^(2*c)*(43681/(10000*b^2) + 1)^c*(44521/(10000*b^2) + 1)^c*(49729/(10000*b^2) + 1)^c*(51529/(10000*b^2) + 1)^(3*c)*(56169/(10000*b^2) + 1)^c*(57121/(10000*b^2) + 1)^c*(58081/(10000*b^2) + 1)^c*(59049/(10000*b^2) + 1)^(2*c)*(61009/(10000*b^2) + 1)^c*(63001/(10000*b^2) + 1)^(2*c)*(66049/(10000*b^2) + 1)^c*(69169/(10000*b^2) + 1)^c*(72361/(10000*b^2) + 1)^c*(73441/(10000*b^2) + 1)^c*(77841/(10000*b^2) + 1)^c*(80089/(10000*b^2) + 1)^(3*c)*(85849/(10000*b^2) + 1)^c*(95481/(10000*b^2) + 1)^c*(114921/(10000*b^2) + 1)^c*(116281/(10000*b^2) + 1)^c*(124609/(10000*b^2) + 1)^c*(137641/(10000*b^2) + 1)^c*(c + 1)^353)/(pi^353*((b^2 + 968562431735785/70368744177664)^(c + 1) - b^(2*c + 2))^353))
The result is always -inf...
But using the symbolyc function I got numbers like,
-2.966948035e-508
I think that is because the precision
Esteban Garcia
2022-5-11
Hello Matt it is much faster now without symbolyc and with log. Thank you
N=length(Rproj);
R=max(Rproj);
A=1000000
B=0
C=0
syms b c
for j=1:N
F(j)=log(2*Rproj(j)*(1+(Rproj(j)/b)^2)^c/(((b^2+R^2)^(c+1)-b^(2*c+2))/(b^(2*c)*(c+1))));
end
E=-sum(F);
fstr=string(E);
fstr=replace(fstr,'b','b(k)');
fstr=replace(fstr,'c','c(j)');
b=0.01:0.001:0.8
c=-1.405:0.001:-0.705
for k=1:length(b)
for j=1:length(c)
n=eval(fstr);
if n<A
A=n;
B=b(k);
C=c(j);
end
end
end
更多回答(1 个)
Mitch Lautigar
2022-5-9
My suggestion is to use a smaller step size for <a,b,c> if you know what they are. Typically when you are trying to fix the curve, the only thing you can do is try to add in more datapoints. If you can provide some code, I can provide more feedback.
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Surrogate Optimization 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!发生错误
由于页面发生更改,无法完成操作。请重新加载页面以查看其更新后的状态。
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
亚太
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)