Using Implicit Euler Method with Newton-Raphson method

72 次查看(过去 30 天)
So I'm following this algorithm to write a code on implicit euler method
and here is my attempt
function y = imp_euler(f,f_y,t0,T,y0,h,tol,N)
t = t0:h:T;
n = length(t);
y = zeros(n,1);
y(1) = y0;
for k = 1:n-1
g = @(z) z - y(k) - h*f(t(k+1),z);
gp = @(z) 1 - h*f_y(t(k+1),z) ;
y(k+1) = newton(f,f_y,y(k),tol,N);
end
end
where
function sol=newton(f,fp,x0,tol,N)
i=0;
sol = zeros(N,2);
fc=abs(f(x0));
while (fc>tol)
xc = x0 - (f(x0)/fp(x0));
fc=abs(f(xc));
x0 = xc;
i=i+1;
sol(i,:) = [i; x0];
if (i>N)
fprintf('Method failed after %d iterations. \n',N);
break
end
end
sol = sol(any(sol,2),:);
end
Unfortunately, my code does not work for some reason. Could anybody guide me on how to code this? Comments are appreciated.
  7 个评论
Eugene Miller
Eugene Miller 2022-5-11
i tested it with this
f = @(t, y) -20*t*y^2;
f_y = @(t, y) -40*t*y;
t0 = 0;
T = 1;
y0 = 1;
h = 0.2;
tol = 1e-8;
N = 100;

请先登录,再进行评论。

采纳的回答

Torsten
Torsten 2022-5-11
编辑:Torsten 2022-5-11
f = @(t,y) -20*t*y^2;
f_y = @(t,y) -40*t*y;
t0 = 0;
T = 1;
y0 = 1;
h = 0.01;
tol = 1e-8;
N = 100;
y = imp_euler(f,f_y,t0,T,y0,h,tol,N)
plot(t0:h:T,y)
hold on
plot(t0:h:T,1./(1+10*(t0:h:T).^2))
function y = imp_euler(f,f_y,t0,T,y0,h,tol,N)
t = t0:h:T;
n = length(t);
y = zeros(n,1);
y(1) = y0;
for k = 1:n-1
g = @(z) z - y(k) - h*f(t(k+1),z);
gp = @(z) 1 - h*f_y(t(k+1),z) ;
disp('Vor Newton call.')
y(k+1) = newton(g,gp,y(k),tol,N);
disp('nach Newton Call.')
end
end
function sol=newton(f,fp,x0,tol,N)
i=0;
sol = zeros(N,2);
fc=abs(f(x0));
while fc > tol
xc = x0 - (f(x0)/fp(x0));
fc=abs(f(xc));
x0 = xc;
i=i+1;
if (i>N)
fprintf('Method failed after %d iterations. \n',N);
break
end
end
sol = x0;
end

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by