Indefinite integral for a step function with variable number of steps
1 次查看(过去 30 天)
显示 更早的评论
Hello friends,
I have a function handle which is defined by interp1. Is there a way to find its indefinite integral?
For instance
x0=[1 2 5 7 10];y0=[2 1 3 2]; f=@(x)interp1(x0,y0,x,'previous');
Please note the above example is just a simple case (I know how to handle this easy case). My function is a step function with many steps where the number of steps are not known to me beforehand. So, in general my function is defined by f=@(x)interp1(mesh,c,x,'previous'); where mesh is my x-data, c is a vector of steps or y-data. How to find the indefinite integral of this function?
Thanks in advance!
Babak
0 个评论
采纳的回答
Torsten
2022-6-1
The definite integral between a and b where mesh(1) <= a < b <= mesh(end) can be computed as for every other function as
value_integral = integral(f,a,b)
where
f = @(x)interp1(mesh,c,x,'previous')
3 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Matrix Computations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!