# Help plotting a circular orbit

10 次查看（过去 30 天）

Hi so basically i would like to be able to produce a circular graph of sattelite position around earth. The code attached below starts with acceleration and use Eulers method to integrate once for velocity and again for displacement. The code works and produces results i am just unsure how to convert the outputs into a circular graph that updates displacement around earth as a result of the calculated velocity.
Code:
clear all
clc
G = 6.6743*10^-11; %Gravitational Constant, Units: m^3 kg^-1 s^-2
Mc = 5.972*10^24; %Mass of central body (earth), Units: kg
rE = 6371; %Radius of earth, Units: Km
height = 4000 %Altitude of sattelites orbit, Units: km
r = height + rE; %Radius of circular orbits, Units: km
mu = 3.986004418*10^5; %Earths Gravitational parameter, Units: km^3s^-2
x_initial = 0;
v_initial = 12000; %km/h
dt = 0.1;
t_vector = 0:dt:100000;
x(1) = x_initial;
v(1) = v_initial;
%%Math working out
%Fx = -G*x*(Mc/r^3);
%a = Fx/Mc
%a = (-G*x)/r^3
%a = -5.9833e-23*x m/s^2
%v(t) = 12000 + a*t
%y(t) = r + 12000t + 0.5a*t^2
x_initial = 0;
v_initial = 12000;
x(1)=x_initial;
v(1)=v_initial;
for i=1:length(t_vector)-1
a = -G/r^3;
v(i+1) = v(i) + a*dt;
xslope = v(i);
x(i+1) = x(i)+xslope*dt;
end
figure(1)
plot(t_vector,x)
figure(2)
plot(t_vector,v)
##### 1 个评论显示隐藏 无
Walter Roberson 2022-6-4
You need to track x and y separately.

### 采纳的回答

G = 6.6743*10^-11; %Gravitational Constant, Units: m^3 kg^-1 s^-2
Mc = 5.972*10^24; %Mass of central body (earth), Units: kg
rE = 6371; %Radius of earth, Units: Km
height = 4000; %Altitude of sattelites orbit, Units: km
r = height + rE; %Radius of circular orbits, Units: km
x_initial = 0;
y_initial = r*1e3;
dt = 1;
T = sqrt(4*pi^2*(r*1e3)^3/(G*Mc)); % period in sec
t_vector = 0:dt:T;
dsdt = @(s)[s(3), s(4), -G*Mc*s(1)/norm(s([1,2]))^3, -G*Mc*s(2)/norm(s([1,2]))^3]; %satelite orbitaal dynamics
x = x_initial; y = y_initial; v = sqrt(G*Mc/(r*1e3));
xv = v*y_initial/(r*1e3); yv = -v*x_initial/(r*1e3); % initial velocities
state = [x_initial, y_initial, xv, yv];
for i=2:length(t_vector)
state = state + rk4(dsdt, state, dt);
x = [x, state(1)];
y = [y, state(2)];
xv = [xv, state(3)];
yv = [yv, state(4)];
end
figure
subplot(2,2,1)
plot(t_vector,x)
title('x position of satellite')
subplot(2,2,2)
plot(t_vector,y)
title('y position of satellite')
subplot(2,2,3)
plot(t_vector,xv)
title('x velocity of satellite')
subplot(2,2,4)
plot(t_vector,yv)
title('y velocity of satellite') figure
plot(x, y)
title('orbit of satellite') function dy = rk4(dydt, y, dt) %runge kutta integrator
k1 = dydt(y); k2 = dydt(y + dt*k1/2);
k3 = dydt(y + dt*k2/2); k4 = dydt(y + dt*k3);
dy = dt*(k1+2*k2+2*k3+k4)/6;
end
##### 1 个评论显示隐藏 无
This is amazing thank you so much

### 类别

Find more on Reference Applications in Help Center and File Exchange

R2021b

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!