Error in rl.agent.AbstractAgent/train while executing example "Train Reinforcement Learning Agent in MDP Environment"
18 次查看(过去 30 天)
显示 更早的评论
Hi,
I'm trying to run an example from the Reinforcement learning Toolbox examples, but the function train() does not work correctly. The example is "Train Reinforcement Learning Agent in MDP Environment". I have only changed the value of doTraining to true to be able to execute that part of the code.
This is the code of the example:
MDP = createMDP(8,["up";"down"]);
% State 1 transition and reward
MDP.T(1,2,1) = 1;
MDP.R(1,2,1) = 3;
MDP.T(1,3,2) = 1;
MDP.R(1,3,2) = 1;
% State 2 transition and reward
MDP.T(2,4,1) = 1;
MDP.R(2,4,1) = 2;
MDP.T(2,5,2) = 1;
MDP.R(2,5,2) = 1;
% State 3 transition and reward
MDP.T(3,5,1) = 1;
MDP.R(3,5,1) = 2;
MDP.T(3,6,2) = 1;
MDP.R(3,6,2) = 4;
% State 4 transition and reward
MDP.T(4,7,1) = 1;
MDP.R(4,7,1) = 3;
MDP.T(4,8,2) = 1;
MDP.R(4,8,2) = 2;
% State 5 transition and reward
MDP.T(5,7,1) = 1;
MDP.R(5,7,1) = 1;
MDP.T(5,8,2) = 1;
MDP.R(5,8,2) = 9;
% State 6 transition and reward
MDP.T(6,7,1) = 1;
MDP.R(6,7,1) = 5;
MDP.T(6,8,2) = 1;
MDP.R(6,8,2) = 1;
% State 7 transition and reward
MDP.T(7,7,1) = 1;
MDP.R(7,7,1) = 0;
MDP.T(7,7,2) = 1;
MDP.R(7,7,2) = 0;
% State 8 transition and reward
MDP.T(8,8,1) = 1;
MDP.R(8,8,1) = 0;
MDP.T(8,8,2) = 1;
MDP.R(8,8,2) = 0;
MDP.TerminalStates = ["s7";"s8"];
env = rlMDPEnv(MDP);
env.ResetFcn = @() 1;
rng(0);
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
qTable = rlTable(obsInfo, actInfo);
qFunction = rlQValueFunction(qTable, obsInfo, actInfo);
qOptions = rlOptimizerOptions("LearnRate",1);
agentOpts = rlQAgentOptions;
agentOpts.DiscountFactor = 1;
agentOpts.EpsilonGreedyExploration.Epsilon = 0.9;
agentOpts.EpsilonGreedyExploration.EpsilonDecay = 0.01;
agentOpts.CriticOptimizerOptions = qOptions;
qAgent = rlQAgent(qFunction,agentOpts); %#ok<NASGU>
trainOpts = rlTrainingOptions;
trainOpts.MaxStepsPerEpisode = 50;
trainOpts.MaxEpisodes = 500;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 13;
trainOpts.ScoreAveragingWindowLength = 30;
doTraining = true;
if doTraining
% Train the agent.
trainingStats = train(qAgent,env,trainOpts); %#ok<UNRCH>
else
% Load pretrained agent for the example.
load('genericMDPQAgent.mat','qAgent');
end
Data = sim(qAgent,env);
And this is the error:
Error using rl.train.SeriesTrainer/run
There was an error executing the ProcessExperienceFcn.
Caused by:
Error using rl.function.AbstractFunction/gradient
Unable to compute gradient from function model.
Error in rl.agent.rlQAgent/learn_ (line 228)
CriticGradient = gradient(this.Critic_,lossFcn,...
Error in rl.agent.AbstractAgent/learn (line 29)
this = learn_(this,experience);
Error in rl.util.agentProcessStepExperience (line 6)
learn(Agent,Exp);
Error in rl.env.internal.FunctionHandlePolicyExperienceProcessor/processExperience_ (line 31)
[this.Policy_,this.Data_] = feval(this.Fcn_,...
Error in rl.env.internal.ExperienceProcessorInterface/processExperienceInternal_ (line 137)
processExperience_(this,experience,getEpisodeInfoData(this));
Error in rl.env.internal.ExperienceProcessorInterface/processExperience (line 78)
stopsim = processExperienceInternal_(this,experience,simTime);
Error in rl.env.internal.MATLABSimulator/simInternal_ (line 128)
stopsim = processExperience(expProcessor,exp,i*ts);
Error in rl.env.internal.MATLABSimulator/sim_ (line 67)
out = simInternal_(this,simPkg);
Error in rl.env.internal.AbstractSimulator/sim (line 30)
out = sim_(this,simData,policy,processExpFcn,processExpData);
Error in rl.env.AbstractEnv/runEpisode (line 144)
out = sim(simulator,simData,policy,processExpFcn,processExpData);
Error in rl.train.SeriesTrainer/run (line 32)
out = runEpisode(...
Error in rl.train.TrainingManager/train (line 429)
run(trainer);
Error in rl.train.TrainingManager/run (line 218)
train(this);
Error in rl.agent.AbstractAgent/train (line 83)
trainingResult = run(trainMgr,checkpoint);
Error in test_IA (line 76)
trainingStats = train(qAgent,env,trainOpts); %#ok<UNRCH>
Caused by:
Undefined function 'struct2array' for input arguments of type 'struct'.
Error in rl.train.TrainingManager/train (line 429)
run(trainer);
Error in rl.train.TrainingManager/run (line 218)
train(this);
Error in rl.agent.AbstractAgent/train (line 83)
trainingResult = run(trainMgr,checkpoint);
Error in test_IA (line 76)
trainingStats = train(qAgent,env,trainOpts); %#ok<UNRCH>
2 个评论
回答(2 个)
MULI
2024-11-18,4:39
编辑:MULI
2024-11-18,4:39
I understand that you are facing an issue when “doTraining” flag is set to “true” in "Train Reinforcement Learning Agent in MDP Environment" example.
You can try the below suggestions to resolve this issue:
- Check whether you have “signal processing toolbox” and “DSP system toolbox” installed.
- Also Check if the“struct2array”function is available in your MATLAB installation. You can do this by typing:
>>which struct2array
You can refer to the below MATLAB answer to get some additional insights on this issue:
0 个评论
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!