calculate the classification accuracy after training a "pretrained model"

14 次查看(过去 30 天)
how to calcualte the MSE, MAE RMSE or any other classification accuracy of a pretrained model?
next is my code:
imds = imageDatastore('C:\Users\Rayan\Desktop\Work\9_5_work_on_4_groups\9_1\R_9_1_GSM', ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');
numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);
net = resnet50;
deepNetworkDesigner(net)
analyzeNetwork(net)
inputSize = net.Layers(1).InputSize;
lgraph = layerGraph(net);
edit(fullfile(matlabroot,'examples','nnet','main','findLayersToReplace.m'))
[learnableLayer,classLayer] = findLayersToReplace(lgraph);
[learnableLayer,classLayer] %#ok<NOPTS>
numClasses = numel(categories(imdsTrain.Labels));
%numClasses = 3
if isa(learnableLayer,'nnet.cnn.layer.FullyConnectedLayer')
newLearnableLayer = fullyConnectedLayer(numClasses, ...
'Name','new_fc', ...
'WeightLearnRateFactor',10, ...
'BiasLearnRateFactor',10);
elseif isa(learnableLayer,'nnet.cnn.layer.Convolution2DLayer')
newLearnableLayer = convolution2dLayer(1,numClasses, ...
'Name','new_conv', ...
'WeightLearnRateFactor',10, ...
'BiasLearnRateFactor',10);
end
lgraph = replaceLayer(lgraph,learnableLayer.Name,newLearnableLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,classLayer.Name,newClassLayer);
layers = lgraph.Layers;
connections = lgraph.Connections;
layers(1:20) = freezeWeights(layers(1:20));
lgraph = createLgraphUsingConnections(layers,connections);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain)
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
miniBatchSize=10;
valFrequency = floor(numel(augimdsTrain.Files)/miniBatchSize);
options = trainingOptions('sgdm', ...
'MiniBatchSize',10, ...
'MaxEpochs',6, ...
'InitialLearnRate',0.0007, ...
'Shuffle','every-epoch', ...
'ValidationFrequency',valFrequency, ...
'ValidationData',augimdsValidation, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(augimdsTrain,lgraph,options);
[YPred,probs] = classify(net,augimdsValidation);
accuracy = mean(YPred == imdsValidation.Labels);
idx = randperm(numel(imdsValidation.Files),100);
R=1;
for j =1:24
figure(j)
for i = 1:4
subplot(2,2,i)
I = readimage(imdsValidation,idx(R));
imshow(I)
label = YPred(idx(R));
title(string(label) + ", " + num2str(100*max(probs(idx(R),:)),3) + "%");
R=R+1;
end
end

采纳的回答

Andreas Apostolatos
Hi Rayan,
From the code snippet you share it appears that you are training a neural network for classification while you are then performing inference for some validation data,
net = trainNetwork(augimdsTrain,lgraph,options);
[YPred,probs] = classify(net,augimdsValidation);
accuracy = mean(YPred == imdsValidation.Labels);
Error measures such as the Mean Squarer Error (MSE) or the Root Mean Square Error (RMSE) are suited for regression problems where the response variables are continuous and not for classification problems.
To evaluate the performance of a classifier it is more appropriate to use a Confusion Matrix or to compute the percentage of responses that have been correctly predicted by the classifier. The corresponding workflow is underlined in the following link,
I hope that you find this information useful for needs.
Kind regards
Andreas
  2 个评论
Rayan Matlob
Rayan Matlob 2022-6-29
编辑:Rayan Matlob 2022-6-29
after training the previeus example , if i used (SVM) , would i be able to find MSE, MAE RMSE or any other classification accuracy
as follow:
% Call the workspace_5.mat and then run the following codes to achive the support vector machine
% Try SVM ############################################################################
[imdsTrain,imdsTest,augimdsValidation] = splitEachLabel(imds,0.7,0.2,0.1,'randomized');
numTrainImages = numel(imdsTrain.Labels);
%inputSize = net.Layers(1).InputSize;
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);
augimdsTest = augmentedImageDatastore(inputSize(1:2),imdsTest);
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
layer = 'avg_pool';
featuresTrain = activations(net,augimdsTrain,layer,'OutputAs','rows');
featuresTest = activations(net,augimdsTest,layer,'OutputAs','rows');
whos featuresTrain
YTrain = imdsTrain.Labels;
YTest = imdsTest.Labels;
YVal = imdsValidation.Labels;
classifier = fitcecoc(featuresTrain,YTrain);
YPred = predict(classifier,featuresTest);
accuracy = mean(YPred == YTest)
layer = 'activation_46_relu';
featuresTrain = activations(net,augimdsTrain,layer);
featuresTest = activations(net,augimdsTest,layer);
whos featuresTrain
featuresTrain = squeeze(mean(featuresTrain,[1 2]))';
featuresTest = squeeze(mean(featuresTest,[1 2]))';
whos featuresTrain
classifier = fitcecoc(featuresTrain,YTrain);
YPred = predict(classifier,featuresTest);
accuracy = mean(YPred == YTest)
% with activation_46_relu, ---> accuracy=0.9846
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
[YPred,probs] = classify(net,augimdsValidation);
%Test
idx = randperm(numel(imdsValidation.Files),8);
R=1;
for j =1:2
figure(j)
for i = 1:4
subplot(2,2,i)
I = readimage(imdsValidation,idx(R));
imshow(I)
label = YPred(idx(R));
title(string(label) + ", " + num2str(100*max(probs(idx(R),:)),3) + "%");
R=R+1;
end
end
Dehia
Dehia 2023-10-2
Could you assist me in calculating the F-score, recall, sensitivity, and ROC curve, please?

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Deep Learning Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by