NARX Closed Loop Network for one step prediction

1 次查看(过去 30 天)
Hi everyone,
i am using NARX Closed Loop Networks for timeseries prediction. I got a network with 6 input delays and 6 feedback delays, as showed in the figure:
I understand that this network is able to predict y(t) = f(y(t-1),...,y(t-6),u(t-1),...,u(t-6)). If this is true, i should be able to predict one y value having 6 past values from y and u. The problem is, when I use
[xc,xic,aic,~] = preparets(net,input,{},output);
with this dataset of 6 samples, the argument xc (shifted inputs) is empty. I make my prediction:
[yc] = net(xc,xic,aic);
And yc is also empty. As far as I understand NARX Networks, if I'm feeding the network with 6 past input samples and 6 past output samples it should be enough, but it isn't. It needs 7 input values to make one prediction. Why is this?
Thank you for the help.

回答(1 个)

Krishna
Krishna 2022-7-3
Hey Pablo,
I think you need 6 previous values as input and for that the network predicts the 7th value.
Also same goes for the training part.

类别

Help CenterFile Exchange 中查找有关 Sequence and Numeric Feature Data Workflows 的更多信息

产品


版本

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by