symbolic integration depends on different equivalent forms of function

5 次查看(过去 30 天)
I performed the following equaivalent symbolic integrations:
syms x y
A = int(x+y,x);
A_ = expand(A); % just expanded (equaivalent) form of A
B = expand(int(A,y))
B_ = expand(int(A_,y))
with the following results:
A =
(x*(x + 2*y))/2
A_ =
x^2/2 + y*x
B =
x^3/8 + (x^2*y)/2 + (x*y^2)/2
B_ =
(x^2*y)/2 + (x*y^2)/2
I expect B equal to B_, but there is a misterious additional term x^3/8 at B ??!!
Is that a bug???

回答(2 个)

Torsten
Torsten 2022-7-15
The difference is a usual "constant of integration".
If you differentiate both B and B_ with respect to y and then with respect to x, you'll arrive at the expression x+y in both cases:
syms x y
B_ = (x^2*y)/2 + (x*y^2)/2;
B = x^3/8 + (x^2*y)/2 + (x*y^2)/2;
A_ = diff(B_,y);
A = diff(B,y);
expr1 = diff(A_,x)
expr1 = 
expr2 = diff(A,x)
expr2 = 
  7 个评论
Torsten
Torsten 2022-7-15
I'm not surprised that
int((x*(x + 2*y))/2,y)
gives a result different from
int(x^2/2 + y*x,y).
See
syms x
int((x-1)^2,x)
ans = 
compared to
int(x^2-2*x+1,x)
ans = 
Paul
Paul 2022-7-15
编辑:Paul 2022-7-15
I'm not surprised either. I've seen cases where int() couldn't find a solution unless the integrand was manipulated using simplify, expand, etc. Here is an example from this Question
syms t
assume(t, "real")
f1 = 3*t-t*t*t;
f2 = 3*t*t;
f = [f1, f2];
df = diff(f, t);
a = 0;
b = 1;
normDf = sqrt(df(1)*df(1)+df(2)*df(2));
int(normDf,t,a,b) % no solution
ans = 
normDf = simplify(normDf)
normDf = 
int(normDf, t, a, b) % easy
ans = 
4

请先登录,再进行评论。


Michal
Michal 2022-7-16
编辑:Michal 2022-7-16
Simple solution to avoid integration constant effect:
int(f(x),x,0,x)
  4 个评论
Torsten
Torsten 2022-7-16
编辑:Torsten 2022-7-16
syms x y
A1 = int(sin(x)+sin(y),x,0,x);
B1 = int(A1,y,0,y)
B1 = 
simplify(B1)
ans = 
A2 = int(sin(x)+sin(y),x);
B2 = int(A2,y)
B2 = 
You see, the integration constant of your method is x+y.
All I want to say is:
Each integration gives its individual integration constant. For the differential equation
d/dx (d/dy(F(x,y))) = x+y
e.g., the "integration constants" are functions of the form
G(x,y) = g1(x) + g2(y)
unless you fix F on a curve in the (x,y) plane (not parallel to one of he coordiante axes).
Some integration constants look more plausible, others less.
And now I will be quiet and you can have "the last word", if you want.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Calculus 的更多信息

产品


版本

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by