I have a problem with my detector , i get [bbox, score, label] empty.
2 次查看(过去 30 天)
显示 更早的评论
%% detection
pp=alexnet;
pp1=pp.Layers;
pp=pp.Layers(1:19);
ppp=[pp
fullyConnectedLayer(2)
softmaxLayer()
classificationLayer()];
options = trainingOptions('sgdm', ...
'MiniBatchSize', 10, ...
'InitialLearnRate', 1e-3, ...
'MaxEpochs', 1, ...
'CheckpointPath', tempdir);
train1 =trainFastRCNNObjectDetector(gTruth, ppp, options, ...
'NegativeOverlapRange', [0 0.1], ...
'PositiveOverlapRange', [0.5 1], ...
'SmallestImageDimension', 300);
img = imread('image (825).JPG');
[bbox, score, label] = detect(train1, img);
imshow(insertObjectAnnotation(img, 'rectangle', bbox, label));
0 个评论
回答(1 个)
Shuba Nandini
2023-9-1
Hello,
It is my understanding that you want to train the “trainFastRCNNObjectDetector” with ‘alexnet’ as the backbone network.
As per the documentation, “trainFastRCNNObjectDetector” function offers a functionality to automatically transform the backbone classification network, into a Fast R-CNN network by adding an ROI max pooling layer, classification layer and regression layer.
The above functionality can be achieved, by specifying the required classification network name for the “network” argument.
Please refer to the following link, for further information,
Hope this helps!
Regards,
Shuba Nandini
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Introduction to Installation and Licensing 的更多信息
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!