How I can give condition & plot the solution of this differential equation. . . . . . . Please Guide
2 次查看(过去 30 天)
显示 更早的评论
This is the equation for which
boundery condition are
theta(z=0)=0 degree
theta(z=h)=90 degree
where h=6
z=0:h
how to give condition here
e=8.85*10^-12
dele=11
E=1
k11=9
k33=9
k22=11
syms theta(z) z dtheta
dtheta=diff(theta,z)
d2theta=diff(theta,z,2)
eqn=d2theta+((k33-k11)*cos(theta)*sin(theta))*(dtheta)^2*(1/(k11*(cos(theta))^2+k22*(sin(theta))^2))+e*dele*E^2*cos(theta)*sin(theta)*(1/(k11*(cos(theta))^2+k22*(sin(theta))^2))
cond(theta(0)==0, theta(pi/2)==0)
thetaSol = dsolve(eqn,cond)
thetaSol = unique(simplify(thetaSol))
fplot(thetaSol)
7 个评论
回答(3 个)
Torsten
2022-7-22
编辑:Torsten
2022-7-22
dsolve doesn't succeed. Thus use a numerical solver (bvp4c) to solve your equation.
syms A theta(z)
dtheta=diff(theta,z)
d2theta=diff(theta,z,2)
eqn = d2theta + A/2*sin(2*theta)==0;
cond = [theta(0)==0, theta(6)==pi/2];
thetaSol = dsolve(eqn,cond)
7 个评论
Torsten
2022-7-28
Not clear what you mean.
The boundary value for theta at z = 6 can be set by writing it in the variable "bv" of my code above. Experiment with it.
Sam Chak
2022-7-22
Giiven the parameters, it seems that if you select initial values and , the boundary values are satisfied.
epsilnot = 8.85*10^-12;
dele = 11;
E = 1;
k11 = 9;
k33 = 9;
k22 = 11;
A = sqrt(dele*epsilnot*E^2/k11);
f = @(t, x) [x(2); ...
- (A/2)*sin(2*x(1))];
tspan = [0 6];
initc = [0 pi/12]; % initial condition
[t, x] = ode45(f, tspan, initc);
plot(t, x(:,1), 'linewidth', 1.5), grid on, xlabel('t'), ylabel('\theta')
x(end,1) % π/2 at θ(6)
MOSLI KARIM
2023-2-16
%%
function answer
clc
clear all
close all
global A
epsilnot = 8.85*10^-12;
dele = 11;
E = 1;
k11 = 9;
k33 = 9;
k22 = 11;
A = sqrt(dele*epsilnot*E^2/k11);
solinit=bvpinit(linspace(0,6),[0;pi/12])
sol=bvp4c(@fct,@bc,solinit)
figure(1)
plot(sol.x,sol.y(1,:))
function dxdy=fct(x,y)
dxdy=[y(2); -(A/2)*sin(2*y(1))];
end
function res=bc(ya,yb)
res=[ya(1);yb(1)-90]
end
end
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Particle & Nuclear Physics 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!