How to quickly calculate the following function?

5 次查看(过去 30 天)
Hi all,I want to calculate the function shown below:
This is Lerch transcendent function( https://en.wikipedia.org/wiki/Lerch_zeta_function ).
I use the following formula to calculate it, but this is too slow (I need to calculate it many times):
There is also no official function here to calculate it.
So I would like to know how to calculate it quickly, thank you all in advance!
  5 个评论

请先登录,再进行评论。

采纳的回答

Jan
Jan 2022-9-4
Calculating the sum seems to be more stable. For cases, in which the integral method is successful, the sum is 10 to 200 times faster for the given test data:
function test_Lerch
% See: https://people.math.sc.edu/Burkardt/py_src/polpak/lerch_values.py
% and: https://people.sc.fsu.edu/~jburkardt/m_src/test_values/test_values.html
a_vec = [0.0E+00, ...
0.0E+00, ...
0.0E+00, ...
1.0E+00, ...
1.0E+00, ...
1.0E+00, ...
2.0E+00, ...
2.0E+00, ...
2.0E+00, ...
3.0E+00, ...
3.0E+00, ...
3.0E+00];
s_vec = [2, 3, 10, ...
2, 3, 10, ...
2, 3, 10, ...
2, 3, 10];
z_vec = [0.1000000000000000E+01, ...
0.1000000000000000E+01, ...
0.1000000000000000E+01, ...
0.5000000000000000E+00, ...
0.5000000000000000E+00, ...
0.5000000000000000E+00, ...
0.3333333333333333E+00, ...
0.3333333333333333E+00, ...
0.3333333333333333E+00, ...
0.1000000000000000E+00, ...
0.1000000000000000E+00, ...
0.1000000000000000E+00];
f_vec = [ ...
0.1644934066848226E+01, ...
0.1202056903159594E+01, ...
0.1000994575127818E+01, ...
0.1164481052930025E+01, ...
0.1074426387216080E+01, ...
0.1000492641212014E+01, ...
0.2959190697935714E+00, ...
0.1394507503935608E+00, ...
0.9823175058446061E-03, ...
0.1177910993911311E+00, ...
0.3868447922298962E-01, ...
0.1703149614186634E-04];
for k = 1:numel(z_vec)
z = z_vec(k);
s = s_vec(k);
a = a_vec(k);
f = f_vec(k);
fprintf('\nk: %d\n', k)
tic
for k = 1:1
y1 = Lerch_fun_integral(z,s,a);
end
toc
tic
for k = 1:1
y2 = Lerch_fun_sum(z,s,a);
end
toc
fprintf('Ref: %.16g\n', f);
fprintf('Int: %.16g delta: %16g\n', y1, abs(y1 - f));
fprintf('Sum: %.16g delta: %16g\n', y2, abs(y2 - f));
end
end
function out = Lerch_fun_integral(z,s,a)
f=@(t)((t.^(s-1)).*exp(-a*t))./(1-z.*exp(-t));
out=(1/gamma(s))*(integral(f,0,Inf));
end
function out = Lerch_fun_sum(z, s, a)
out = 0;
if z <= 0
return
end
lim = 1e-16;
k = 0;
z_k = 1;
term = Inf;
while abs(term) > lim * (1.0 + abs(out))
if a + k ~= 0
term = z_k / (a + k)^s;
out = out + term;
end
k = k + 1;
z_k = z_k * z;
end
end

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 MATLAB 的更多信息

产品


版本

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by