Surface data cloud fitting to even asphere model
10 次查看(过去 30 天)
显示 更早的评论
I've got a set of (r,z) data which represent a surface section. I would like to fit such data to the Even asphere expression:

Where
is the surface sagita, r is the radial coordinate, R is the radius of curvatre at the vertex, κ is the conic constant and
are the coefficients describing the deviation of the surface from a pure conic section. Can anyone help to address the problem?
I have calculated the value of R by first fitting the data to a sphere with the code attached below, but I can't find a way to fit the data to the term
once R has been calculated. Thank you, your help is very much appreciated!
once R has been calculated. Thank you, your help is very much appreciated!-----------------------------------------------------------------
Function to fit circle to data set:
function Par = CircleFitting(XY)
centroid = mean(XY); % the centroid of the data set
X = XY(:,1) - centroid(1); % centering data
Y = XY(:,2) - centroid(2); % centering data
Z = X.*X + Y.*Y;
Zmean = mean(Z);
Z0 = (Z-Zmean)/(2*sqrt(Zmean));
ZXY = [Z0 X Y];
[U,S,V]=svd(ZXY,0);
A = V(:,3);
A(1) = A(1)/(2*sqrt(Zmean));
A = [A ; -Zmean*A(1)];
Par = [-(A(2:3))'/A(1)/2+centroid , sqrt(A(2)*A(2)+A(3)*A(3)-4*A(1)*A(4))/abs(A(1))/2];
end
0 个评论
采纳的回答
Torsten
2022-9-7
% your data
x = ...;
y = ...;
z = ...;
p0 = [...]; % initial guess for R and kappa
p = lsqnonlin(@(p)fun(p,x,y,z),p0)
function res = fun(p,x,y,z)
rho = 1/p(1);
kappa = p(2);
r = sqrt(x.^2+y.^2);
res = z - r.^2*rho./(1+sqrt(1-(1+kappa)*(r*rho).^2));
end
9 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Get Started with Curve Fitting Toolbox 的更多信息
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!