Plotting natural frequency, 0 input, developing transfer function

12 次查看(过去 30 天)
This may be super simple for the experts, however here it is. Modeling just a block on a spring (vertical) at its equilibrium position using conservation of energy, the modeling equation is mx(dot dot) + kx = 0. This provides the natural frequency response, and that natural frequency is SQRT(k/m). If I wanted to actually model this using Matlab, the method we use is taking the Laplace, which becomes X(s)[ms^2 + k] = 0. Then analyzing as a transfer function, with the code sys1 = tf([0],[m,0,k]). As you can see, I do not know what to do with that 0 input. If there is a forced input or initial conditions, then the numerator in the tf is not 0. What am I missing here so that I can use Matlab to plot the natural frequency of the expression above? Thanks for any help.

回答(1 个)

Paul
Paul 2022-9-8
Hi Brent,
The modeling equation as stated does not include a forcing input, so there is no transfer fucntion to speak of. If we assume a force input, then the differential equation is
m * xddot + k*x = u(t)
Taking Laplace transform of both sides yields
m*(s^2*X(s) - s*xdot(0) - x(0)) + k*X(s) = U(s)
Now we can define the transer function H(s) as
H(s) = 1/(m*s^2 + k)
With this definition, we have
X(s) = H(s)*U(s) + m*(s*xdot(0) + x(0))/(m*s^2 + k)
as the complete expression for X(s) in term of U(s) and the initial conditions.
Not sure where to go from here or what it means to "plot the natural frequency." Can you clarify?
This can all be derived in Matab using the Symbolic Math Toolbox
syms m k t real
syms u(t) x(t)
eq1 = m*diff(x(t),t,2) + k*x(t) == u(t)
eq1 = 
Leq1 = laplace(eq1);
syms X U s
Leq1 = subs(Leq1,[laplace(x(t),t,s) laplace(u(t),t,s)],[X U])
Leq1 = 
X = solve(Leq1,X)
X = 
as derived above.
H(s) can be represented as a tf object for specific values of m and k.
  1 个评论
Chrissy Rothgeb
Chrissy Rothgeb 2022-9-8
All that makes sense. I'm going to think about this more before I try and clarify my own natural response question. Thank you, I do follow what you're saying.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Programming 的更多信息

产品


版本

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by