Generating combinations under certain constraints
8 次查看(过去 30 天)
显示 更早的评论
I have 5 variables x1,x2,x3,x4 and x5. each is a 4x1 column vector and I want to generate a matrix that holds the different possible combinations of these 5 variables such that the sum of their product(x1'*x1 +x2'*x2+ x3'*x3 +x4'*x4+ x5'*x5) is less than 10. the elements of the 5 variables x are non-negative integers.
11 个评论
John D'Errico
2015-3-8
Not yet. You need to clarify if order matters. Thus, suppose we find a solution
{x1,x2,x3,x4,x5}
then is the set
{x2,x1,x3,x4,x5}
a different solution?
采纳的回答
Matt J
2015-3-8
编辑:Matt J
2015-3-8
It might be helpful to recognize that the problem is equivalent simply to selecting a sequence of 20 square integers. Because of your constraints, the set of square integers you can choose from are {0,1,4,9}. There are only about 7 ways the non-zero square integers can be distributed disregarding order,
- 9
- 9 1
- 4 4
- 4 4 1
- 4 4 1 1
- One 4 and up to 6 ones
- Up to 10 ones
It should be a simple matter to use nchoosek() to identify all the possible selections for each case.
3 个评论
Matt J
2015-3-9
编辑:Matt J
2015-3-9
Your constraint is a sum of squares
sum_k X(k).^2 <=10
where X=[x1;x2;x3;x4;x5] is the vector you get from concatenating all your x_j vectors. We have therefore rewritten the problem in terms of new variables s(k) = X(k).^2, k=1...20. The new variables s(k) can only have values that are squared integers {0,1,4,9}.
Once you have solved in terms of s, you can always convert back to X later.
更多回答(2 个)
Guillaume
2015-3-8
Here is one way to try the brute force approach:
allx = {x1, x2, x3, x4, x5);
sumprodofset = @(cx) sum(cellfun(@(x) x' * x, cx));
combinations = num2cell(logical(dec2bin(1:2^numel(allx)-1, numel(allx)) - '0'), 2);
combsum = cellfun(@(c) sumprodofset(allx(c)), combinations);
validcombtf = combinations(combsum < 10)
Not sure what you want as an output, maybe this:
validcombx = cellfun(@(v) cell2mat(allx(v)), validcombtf, 'UniformOutput', false)
Or this:
valicombtf = cell2mat(validcombtf);
John D'Errico
2015-3-8
编辑:John D'Errico
2015-3-8
There are a fair number of possible solutions, depending on the answers to my questions. We can view the solution in a simple way, regardless. Your clarification of my questions will impact the possible set of solutions.
View this problem as the sum of squares of 20 non-negative integers, such that the sum is no greater than 10. There are only a very restricted set of possibilities we can have for that solution. We can worry about how those integers will be distributed among the vectors afterwards.
So essentially, this problem reduces initially to the set of partitions of the integers 0:10, as a sum of the integers {0,1,4,9}. I'll write that sum in terms of the multiplicity of each square in the sum, where the total multiplicity is exactly 20. So we can have many solutions. Here are a few:
20*0, 19*0+1, 18*0+2*1, ... , 18*0+1*1+1*9.
It looks like there are 23 such fundamental ways we can write the integers 0:10 as such a sum of squares of exactly 20 integers.
Now, for each of those 23 fundamental partitions, now you need only see how the non-zero elements can be distributed among the 5 distinct vectors, and you are done.
0 个评论
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!