Implementing numerical method for PDE
3 次查看(过去 30 天)
显示 更早的评论
Hello
I am trying to solve the following PDE
with intital and boundary conditions such that
. I used the second order centered finite difference discrtization for
and then want solve the ode system using ode15s
with intital and boundary conditions such that
and then want solve the ode system using ode15sHere is my attempt. When I plot the solution obtained from ode15s and compare it to the exact solution they are different. I am not if I made a mistake somewhere. Help is really appreciated
clc,clear,close all
% parameters
t0 = 0;
T = 1.0;
tspan = [t0 T];
xl = 0;
xr = 1;
m = 20;
x = linspace(xl,xr,m + 1);
dx = 1/m;
Uexact = @(t,x) exp(1i*(x-t));
% initial conditions
U0 = Uexact(0,x)';
U0 = U0(2:end-1);
% solve
fn = @(t,U) ODE(t,U,m,dx);
opts = odeset('RelTol',1e-13, 'AbsTol',1e-15);
[t,U] = ode15s(fn, tspan, U0, opts);
%compare with exact solution
plot(x(2:end-1),U(end,:))
hold on
plot(x(2:end-1),Uexact(T,x(2:end-1)))
function dUdt = ODE(t,U,m,dx)
A = eye(m-1);
A = A * (-2);
A = A + diag(ones(m-2,1),1);
A = A + diag(ones(m-2,1),-1);
A = (1/dx^2) * A;
g = zeros(m-1,1);
g(1) = g(1) + (1/dx^2) * exp(1i*(-1*t));
g(end) = g(end) + (1/dx^2) * exp(1i*(1-t));
dUdt = (1i) * (A*U) + g;
end
Thanks
2 个评论
采纳的回答
Davide Masiello
2022-10-13
编辑:Davide Masiello
2022-10-13
clear,clc
tspan = [0 1];
N = 100;
x = linspace(0,1,N);
dx = 1/(N-1);
Uexact = @(t,x) exp(1i*(x-t));
U0 = Uexact(0,x);
M = eye(N);
M(1,1) = 0;
M(N,N) = 0;
opts = odeset('Mass',M,'MassSingular','yes');
[t,U] = ode15s(@(t,U)yourPDE(t,U,N,dx), tspan, U0, opts);
plot(x,real(U(end,:)),'k',x(1:4:end),real(Uexact(1,x(1:4:end))),'r.')
xlabel('x')
ylabel('U')
title('At final time')
legend('Numerical','Exact','Location','Best')
plot(x,real(U(1:3:end,:)),'k',x(1:3:end),real(Uexact(t(1:3:end),x(1:3:end))),'r.')
xlabel('x')
ylabel('U')
title('At several times')
function dUdt = yourPDE(t,U,N,dx)
dUdt(1,1) = U(1)-exp(-1i*t);
dUdt(2:N-1,1) = 1i*(U(1:end-2)-2*U(2:end-1)+U(3:end))/dx^2;
dUdt(N,1) = U(end)-exp(1i*(1-t));
end
0 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Ordinary Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

