Why Matlab could not solve a set of linear differential equations with initial conditions through dsolve?

1 次查看(过去 30 天)
Hi,
Where is the problem in my codes to solve a set of linear differential equations with initial conditions?
Any suggest?
clc
clear
ML = [2.53735261480440e-10 -1.35406667270221e-16 1.30871725825994e-18 -2.13374675288863e-15 2.03261768716403e-17 -1.61477754970584e-16 -1.62541250675724e-16;
-1.35406667270221e-16 2.53734628229043e-10 -2.73582082145325e-17 4.72489571641653e-16 1.92706132643316e-16 8.27766626176449e-16 -4.33522241607763e-16;
1.30871725825994e-18 -2.73582082145325e-17 2.53811694377620e-10 -1.38664722187494e-14 1.89471206077083e-13 -5.47669811839268e-14 2.67184290813528e-14;
-2.13374675288863e-15 4.72489571641653e-16 -1.38664722187494e-14 2.53715763347126e-10 -6.05035598297774e-15 -2.32344311157266e-14 2.96103830935012e-14;
2.03261768716403e-17 1.92706132643316e-16 1.89471206077083e-13 -6.05035598297774e-15 2.53850804700165e-10 -6.82222668978547e-14 4.82767908961758e-14;
-1.61477754970584e-16 8.27766626176449e-16 -5.47669811839268e-14 -2.32344311157266e-14 -6.82222668978547e-14 2.53705685445938e-10 3.43519159646703e-14;
-1.62541250675724e-16 -4.33522241607763e-16 2.67184290813528e-14 2.96103830935012e-14 4.82767908961758e-14 3.43519159646703e-14 2.53690028388901e-10];
KL = [6.34368385323866e-05 -5.80205835437760e-08 -1.23764005930491e-10 -1.48354797737571e-07 -3.76339592244736e-08 -1.55516201961077e-07 -2.99714848304693e-07;
-5.80205835437760e-08 0.00277423390772568 -3.64032926965371e-10 -1.15677999366471e-06 -5.05159524190059e-07 -1.14803879509422e-06 -2.36449328010142e-06;
-1.23764005930491e-10 -3.64032926965371e-10 0.00351253253565176 2.60553493225360e-07 -2.50880577858935e-05 8.96289108975872e-06 2.53253964466067e-07;
-1.48354797737571e-07 -1.15677999366471e-06 2.60553493225360e-07 0.0201021660593748 -0.000292315163965329 0.000101788069022335 -6.31134009698694e-06;
-3.76339592244736e-08 -5.05159524190059e-07 -2.50880577858935e-05 -0.000292315163965329 0.0414826409114255 0.00570625287068793 0.00236501515779697;
-1.55516201961077e-07 -1.14803879509422e-06 8.96289108975872e-06 0.000101788069022335 0.00570625287068793 0.0634851951853710 -0.000910774592712826;
-2.99714848304693e-07 -2.36449328010142e-06 2.53253964466067e-07 -6.31134009698694e-06 0.00236501515779697 -0.000910774592712826 0.121679411312940];
F=[0.000289760052925726;
0.000537710491736623;
1.24507643858810e-08;
-0.000328931258625777;
-4.51634984307082e-05;
-0.000110003762488177;
-0.000505551160254736];
syms tau_1(t) tau_2(t) tau_3(t) tau_4(t) tau_5(t) tau_6(t) tau_7(t)
v = transpose([tau_1 tau_2 tau_3 tau_4 tau_5 tau_6 tau_7]);
odes = diff(diff(v)) == -inv(ML) * KL * v;
C = [v(0) == double(0*inv(ML) * [F]) , diff(v(0)) == double(01*inv(ML) * [F])];
dsolve(odes,C)

采纳的回答

Torsten
Torsten 2022-11-12
编辑:Torsten 2022-11-12
The eigenvalues of a polynomial of degree 14 (=degree of ODEs * number of ODEs) are required to get an analytical solution for your problem. But analytical formulae for roots of polynomials only exist up to degree 4.
  4 个评论
Torsten
Torsten 2022-11-12
编辑:Torsten 2022-11-12
ML = [2.53735261480440e-10 -1.35406667270221e-16 1.30871725825994e-18 -2.13374675288863e-15 2.03261768716403e-17 -1.61477754970584e-16 -1.62541250675724e-16;
-1.35406667270221e-16 2.53734628229043e-10 -2.73582082145325e-17 4.72489571641653e-16 1.92706132643316e-16 8.27766626176449e-16 -4.33522241607763e-16;
1.30871725825994e-18 -2.73582082145325e-17 2.53811694377620e-10 -1.38664722187494e-14 1.89471206077083e-13 -5.47669811839268e-14 2.67184290813528e-14;
-2.13374675288863e-15 4.72489571641653e-16 -1.38664722187494e-14 2.53715763347126e-10 -6.05035598297774e-15 -2.32344311157266e-14 2.96103830935012e-14;
2.03261768716403e-17 1.92706132643316e-16 1.89471206077083e-13 -6.05035598297774e-15 2.53850804700165e-10 -6.82222668978547e-14 4.82767908961758e-14;
-1.61477754970584e-16 8.27766626176449e-16 -5.47669811839268e-14 -2.32344311157266e-14 -6.82222668978547e-14 2.53705685445938e-10 3.43519159646703e-14;
-1.62541250675724e-16 -4.33522241607763e-16 2.67184290813528e-14 2.96103830935012e-14 4.82767908961758e-14 3.43519159646703e-14 2.53690028388901e-10];
KL = [6.34368385323866e-05 -5.80205835437760e-08 -1.23764005930491e-10 -1.48354797737571e-07 -3.76339592244736e-08 -1.55516201961077e-07 -2.99714848304693e-07;
-5.80205835437760e-08 0.00277423390772568 -3.64032926965371e-10 -1.15677999366471e-06 -5.05159524190059e-07 -1.14803879509422e-06 -2.36449328010142e-06;
-1.23764005930491e-10 -3.64032926965371e-10 0.00351253253565176 2.60553493225360e-07 -2.50880577858935e-05 8.96289108975872e-06 2.53253964466067e-07;
-1.48354797737571e-07 -1.15677999366471e-06 2.60553493225360e-07 0.0201021660593748 -0.000292315163965329 0.000101788069022335 -6.31134009698694e-06;
-3.76339592244736e-08 -5.05159524190059e-07 -2.50880577858935e-05 -0.000292315163965329 0.0414826409114255 0.00570625287068793 0.00236501515779697;
-1.55516201961077e-07 -1.14803879509422e-06 8.96289108975872e-06 0.000101788069022335 0.00570625287068793 0.0634851951853710 -0.000910774592712826;
-2.99714848304693e-07 -2.36449328010142e-06 2.53253964466067e-07 -6.31134009698694e-06 0.00236501515779697 -0.000910774592712826 0.121679411312940];
F=[0.000289760052925726;
0.000537710491736623;
1.24507643858810e-08;
-0.000328931258625777;
-4.51634984307082e-05;
-0.000110003762488177;
-0.000505551160254736];
ML_invers = inv(ML);
fun = @(t,v)[v(8:14);-ML_invers * KL * v(1:7)];
v0 = [0*ML_invers * F;1*ML_invers * F];
[T,V] = ode15s(fun,[0 0.015],v0);
plot(T,V(:,1))

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Symbolic Math Toolbox 的更多信息

产品


版本

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by