Plot step response for control signal (u1 u2 ...) in a MIMO system with feedback
22 次查看(过去 30 天)
显示 更早的评论
0) Especify aditional variables and its values (use space as separator)
otherVars = "K1 K2 B1 B2 m1 m2"; otherVars = split(otherVars);
valueVars = "1 1 1 1 1 1"; valueVars = split(valueVars);
if length(otherVars) == length(valueVars)
arrayfun(@eval,strcat(otherVars,'=',valueVars));
else
warning("Number of variables not equal to its values")
return
end
1) Define the state space matrices
% STATE SPACE REPRESENTATION
AA = [0 0 1 0;0 0 0 1;-K1/m1 K1/m1 -B1/m1 B1/m1;K1/m2 -(K1+K2)/m2 -B1/m2 -(B1+B2)/m2];
BB = [0 0;0 0;1/m1 0;0 1/m2];
CC = [1 0 0 0;0 1 0 0];
DD = [0 0;0 0];
1.1) Define the value of for every
T = [4 4]; I = eye(size(DD,1)); s = tf('s');
2) Obtain the plant transfer function
Gp = tf(ss(AA,BB,CC,DD))
Gp.TimeUnit = 'seconds';
Gp.InputName = 'u';
Gp.OutputName = 'y';
3) Obtain the open loop transfer function
Go = (1/s)*diag(1./T)
4) Obtain the full process transfer function
G = feedback(Go,I)
5) Obtain the PID controller block transfer function
Gc = Gp\Go; Gc = minreal(Gc)
Gc.TimeUnit = 'seconds';
Gc.InputName = 'e';
Gc.OutputName = 'u';
6) Plot the step response from input r to output y
timeLimit = 40;
Sum1 = sumblk('e=r-y',size(T,2));
Cnt = connect(Gc,Gp,Sum1,'r','y','u');
step(Cnt,timeLimit,'r'), grid on
7) Plot the response from input r to output u (problem here)
Tp = getIOTransfer(Cnt,'r','u');
step(Tp,timeLimit,'r'), grid on
I want to obtain the plots for U as this one, is the same problem but the data is obtained through a for loop
This is the original diagram block that I'm trying to simulate without using for loops
0 个评论
采纳的回答
Amey Waghmare
2022-11-25
As per my understanding, you want to plot the response of the system from ‘r’ to ‘u’ but receive the error ‘Cannot simulate the time response of improper (non-causal) models’.
In order to obtain the step response of a system, the system should be ‘causal’ or ‘proper’. A proper system is a one having at least as many poles as zeros or number of poles is greater than number of zeros. To check if a system is proper, you can use the following command;
isproper(sys)
In the code, the Transfer function ‘Tp’ is improper, specifically the transfer functions from r1 to u1 and r2 to u2 are non-causal, with number of poles being 12 and number of zeros being 13 and hence it is not possible to obtain the step response.
2 个评论
Paul
2022-11-26
Hi Cesar,
Tp is not the controller block. That is, Tp is not equal to Gc. Tp is the closed-loop transfer function from r to u; Gc is just the transfer function from e to u. These are not the same thing.
Correct. connect does not execute minreal AFAIK. But I don't see how that's relevant here.
Can you clarify this statement: "if a T.F. is improper then it's graph shouldn't be able to tend to a value."
The design approach used in the Question could be slightly modified so that we can generate the step response from r to us. But those won't look like either set of plots that have been shown.
更多回答(1 个)
Sam Chak
2022-11-26
The original plant is a coupled 2nd-order MIMO system. If the desired closed-loop transfer function is a 1st-order system, this suggests there is loss of information, and in your case, the velocity becomes unobservable.
By redesigning your desired , see example below, you should be able to make proper.
Moreover, the settling time of the closed-loop transfer function is almost the same as the time in the previous .
otherVars = "K1 K2 B1 B2 m1 m2"; otherVars = split(otherVars);
valueVars = "1 1 1 1 1 1"; valueVars = split(valueVars);
if length(otherVars) == length(valueVars)
arrayfun(@eval,strcat(otherVars,'=',valueVars));
else
warning("Number of variables not equal to its values")
return
end
AA = [0 0 1 0;0 0 0 1;-K1/m1 K1/m1 -B1/m1 B1/m1;K1/m2 -(K1+K2)/m2 -B1/m2 -(B1+B2)/m2];
BB = [0 0;0 0;1/m1 0;0 1/m2];
CC = [1 0 0 0;0 1 0 0];
DD = [0 0;0 0];
T = [4 4];
I = eye(size(DD, 1));
s = tf('s');
Gp = tf(ss(AA, BB, CC, DD))
Gp.TimeUnit = 'seconds';
Gp.InputName = 'u';
Gp.OutputName = 'y';
w = 5/13;
Go = tf(w^2, [1 2*w 0])
Gc = Gp\Go;
Gc = minreal(Gc)
Gc.TimeUnit = 'seconds';
Gc.InputName = 'e';
Gc.OutputName = 'u';
timeLimit = 40;
Sum1 = sumblk('e = r - y', size(T, 2));
Cnt = connect(Gc, Gp, Sum1, 'r', 'y', 'u');
step(Cnt, timeLimit), grid on
Tp = getIOTransfer(Cnt, 'r', 'u');
Tp = minreal(tf(Tp))
step(Tp, timeLimit, 'r'), grid on
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Classical Control Design 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!