How to get the derivate using bvp4c

1 次查看(过去 30 天)
I have a coupled non-linear differential equations u''-b1*(t')*(u')+(1+b1*t)*[G1*F1*t+G2*F1*p-F3*P]=0; t''-b2*(t')^2+B*F6*(u')^2+(b2-b1)*t*B*F6*(u')^2-b2*b1*B*F6*t^2*(u')^2=0; p''- A*p=0 and the boundary conditions are u=0,t=1+m,p=1+n at y=-1 and u=0,t=1,p=1 at y=1.
The code is:
clc;
p=0.01;
Betaf= 207;
Betas = 17;
Beta = 0.5;
kof = 0.613;
kos = 400;
m = 1;
b2 = 0.5;
b1 = 0.5;
G1 = 5;
G2 = 5;
A = 0.5;
Rhof = 997.1;
Rhos = 8933;
P = 0.5;
n=0.5;
B=0.01;
A1 = (1-p).^2.5;
A2 = 1/(1 + 1/Beta);
A3 = (1-p)+p.*((Rhos.*Betas)./(Rhof.*Betaf));
F1 = A2.*A3;
F3 = A1.*A2;
F4 = (kos + 2*kof - 2*p.*(kof - kos))/(kos + 2*kof + p.*(kof - kos));
F5 = (1 + 1/Beta)./A1;
F6 = F5./F4;
dydx=@(x,y)[y(4);
y(5);
y(6);
(b1.*y(4).*y(5)-(1+b1.*y(2)).*(G1.*F1.*y(2)+G2.*F1.*y(3)-F3.*P));
b2.*y(5).^2-B.*F6.*y(4).^2+(b2-b1).*y(2).*B.*F6.*y(4).^2-b2.*b1.*B.*F6.*y(2).^2*y(4).^2;
Alpha.*y(3)];
BC=@(ya,yb)[ya(1);yb(1);ya(2)-(1+m);yb(2)-1.0;ya(3)-(1+n);yb(3)-1.0];
yinit=[0.01;0.01;0.01;0.01;0.01;0.01];
solinit=bvpinit(linspace(-1,1,50),yinit);
S=bvp4c(dydx,BC,solinit)
I like to know how to get the derivative value du/dy at y= -1 and y=1 from the above program
Please help me to complete my code.

采纳的回答

Torsten
Torsten 2022-11-26
I assumed Alpha = A in your code.
clc;
p=0.01;
Betaf= 207;
Betas = 17;
Beta = 0.5;
kof = 0.613;
kos = 400;
m = 1;
b2 = 0.5;
b1 = 0.5;
G1 = 5;
G2 = 5;
A = 0.5;
Rhof = 997.1;
Rhos = 8933;
P = 0.5;
n=0.5;
B=0.01;
A1 = (1-p).^2.5;
A2 = 1/(1 + 1/Beta);
A3 = (1-p)+p.*((Rhos.*Betas)./(Rhof.*Betaf));
F1 = A2.*A3;
F3 = A1.*A2;
F4 = (kos + 2*kof - 2*p.*(kof - kos))/(kos + 2*kof + p.*(kof - kos));
F5 = (1 + 1/Beta)./A1;
F6 = F5./F4;
dydx=@(x,y)[y(4);
y(5);
y(6);
(b1.*y(4).*y(5)-(1+b1.*y(2)).*(G1.*F1.*y(2)+G2.*F1.*y(3)-F3.*P));
b2.*y(5).^2-B.*F6.*y(4).^2+(b2-b1).*y(2).*B.*F6.*y(4).^2-b2.*b1.*B.*F6.*y(2).^2*y(4).^2;
A*y(3)];
BC=@(ya,yb)[ya(1);yb(1);ya(2)-(1+m);yb(2)-1.0;ya(3)-(1+n);yb(3)-1.0];
yinit=[0.01;0.01;0.01;0.01;0.01;0.01];
solinit=bvpinit(linspace(-1,1,50),yinit);
S=bvp4c(dydx,BC,solinit)
S = struct with fields:
solver: 'bvp4c' x: [-1 -0.9388 -0.8776 -0.8163 -0.7551 -0.6939 -0.6327 -0.5714 -0.5102 -0.4490 -0.3878 -0.3469 -0.3265 -0.3061 -0.2449 -0.1837 -0.1224 -0.0612 6.9389e-18 0.0612 0.1020 0.1429 0.1837 0.2449 0.3061 0.3673 0.4286 0.4898 0.5510 0.6122 0.6735 … ] y: [6×37 double] yp: [6×37 double] stats: [1×1 struct]
plot(S.x,S.y(1,:))
S.y(4,1) % u'(-1)
ans = 9.1263
S.y(4,end) % u'(1)
ans = -5.8619
  4 个评论
Syed Mohiuddin
Syed Mohiuddin 2022-11-27
yeh, i know, but i want to make sure the solution is correct. Thank you very much
Torsten
Torsten 2022-11-27
So you should come to the result that
S.y(5,1) is dt/dy at y = -1
S.y(5,end) is dt/dy at y = 1
S.y(6,1) is dp/dy at y = -1
S.y(6,end) is dp/dy at y = 1

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Boundary Value Problems 的更多信息

产品


版本

R2016b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by