Why does .* create a matrix when multiplying a row vector by a column vector
29 次查看(过去 30 天)
显示 更早的评论
I am a longtime matlab user and somehow only now running into this issue that seems like strange behavior to me. When multiplying one dimensional vectors element wise, I don't expect there to be a difference between column and row vectors since they are both 1-D. Yet, when you multiply a row vector using .* by a column vector you do not get a 1D vector you get a matrix.
a=1:3;
b=[2
2
2];
c=a.*b
c =
2 4 6
2 4 6
2 4 6
Why does this happen? After some reading I learned matlab has 'implicit expansion' which is what I assume is happening. But I guess my deeper question is why is this a feature? If this is the result I wanted, I would do actual vector multiplication, b*a which gives the same result.
I am currently making a function that accepts vector inputs, and now I have to add some lines to check to make sure that all inputs are the correct orientation. To be specific, I am trying to calculate [1 2 3] .* [2 2 2]=[2 4 6] and have my answer be a vector. A matrix result would be meaningless in my case. I see the otions as either manually varify that the vectors passed to the function are same orientation, or have code that checks the orientation of each line (using size() for example) and transpose vectors as necessary. I am frustrated that these are the only options and wondering if there is a quicker solution.
0 个评论
采纳的回答
Askic V
2022-12-6
编辑:Askic V
2022-12-6
You don't need to write extra code to check orientation. I would use this:
c = a(:).*b(:)
It is only a bit more to code.
BTW, you have found the anwer to your question yourself regarding implicit expansion.
3 个评论
Askic V
2022-12-6
Torsten, you're right, but from the question itself it was obvious to me that OP has 1D vectors with the same number of elements and wants to have a 1 D vector as a result of element wise multiplication. It was clear to me that he doesn't try to compute dot product. That is why I suggested this solution, which I think works for him.
But in general case, I agree the best practice is to check the orientation (row or column vector), but for his application, I think my suggestion can work just fine.
更多回答(1 个)
Torsten
2022-12-6
编辑:Torsten
2022-12-6
Why does this happen? After some reading I learned matlab has 'implicit expansion' which is what I assume is happening. But I guess my deeper question is why is this a feature? If this is the result I wanted, I would do actual vector multiplication, b*a which gives the same result.
There have been long discussions in the forum whether this feature of implicit expansion is useful or not and whether it may hide errors in programming. The majority of people voted that the advantages overweigh the disadvantages. I think we shouldn't open a new discussion about the usefulness of this feature.
I am currently making a function that accepts vector inputs, and now I have to add some lines to check to make sure that all inputs are the correct orientation.
So you don't trust in your programming or the inputs provided by anonymous users of your function ?
3 个评论
Torsten
2022-12-6
编辑:Torsten
2022-12-6
I would like my function to be agnostic to the inputs being column/row to make it easier for me to use later.
So independent of the orientation of a and b, you want to get a.*b as a and b being multiplied elementwise ? But here is where the problem begins: should the resulting a.*b be a row or a column vector ? If you only use the result in your own code, it might not be important for later use. But if you use it in a MATLAB solver, e.g., it will almost always matter - even if the implicit expansion feature had not been introduced.
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Logical 的更多信息
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!