Linear Least Squares Regression

2 次查看(过去 30 天)
A
A 2022-12-9
评论: A 2022-12-10
x = [2, -2, 3, -3];
y = [7, 8, 19, 17];
N = length(x);
X = 'ones (N, 1), x';
Y = y;
J='inv(X.*X)*X*Y';
plot(x,y,'bs',[0, 5],J(1)+J(2)*[0, 5]+J(3)*[0, 5]);
hold on
how can i turn this graph into this graph

回答(1 个)

Bora Eryilmaz
Bora Eryilmaz 2022-12-9
编辑:Bora Eryilmaz 2022-12-9
% Original data
x = [2, -2, 3, -3];
y = [7, 8, 19, 17];
% Take tranposes.
x = x';
y = y';
% Find coefficients of a quadratic polynomial fit using linear least
% squares method.
C = [x.^2 x ones(size(x))] \ y
C = 3×1
2.1000 0.1538 -0.9000
% Get interpolated values on the polynomial.
xi = (-4:0.1:4)';
yi = C(1)*xi.^2 + C(2)*xi + C(3);
% Plot results.
plot(x,y, 'r*')
hold on
plot(xi,yi,'b-')

类别

Help CenterFile Exchange 中查找有关 Linear and Nonlinear Regression 的更多信息

产品


版本

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by