Steepest Ascent Method to find maximum
5 次查看(过去 30 天)
显示 更早的评论
I am looking for a problem in my implementation for steepest ascent method. My answer is in a long equation form with h in it. But I am calculating h in the loop still ther is no value of it for the answer. The solution is at the end of the function
function STPAscent(x,theta,TC)
x0 =1500;
theta0=pi/6;
i=0;
i_max=100;
ea=5;
es=1;
while (es<double(subs(ea)) && i<i_max)
fx = tan(theta0)/(2*100^2*(cos(theta0))^2) + (2*9.81*x0)/(2*100^2*(cos(theta0))^2); % derivative wrt "x"
ftheta= x0*(sin(theta0)*(100*sin(theta0)+981*x0*cos(theta0))+50)/(1000000*(cos(theta0))^4); % derivative wrt "theta"
syms h
x=x0+fx*h;
theta=theta0+ftheta*h;
f= 1000 + (x*tan(theta))/(2*100^2*(cos(theta))^2) + (9.81*x^2)/(2*100^2*(cos(theta))^2);
c=diff(f,h);
assume(h,'clear')
h=solve(c==0,h,'PrincipalValue',true);
x_new=x+fx*h;
theta_new=theta0+ftheta*h;
ea=abs((x_new-x0)/x_new)*100;
x0=x_new;
theta0=theta_new;
i=i+1;
end
fxtheta = 1000 + (x0*tan(theta0))/(2*100^2*(cos(theta0))^2) + (9.81*x0^2)/(2*100^2*(cos(theta0))^2)
simplify(fxtheta)
end
Command Window
Warning: Unable to solve symbolically. Returning a numeric
solution using vpasolve.
> In sym/solve (line 304)
In STPAscent (line 18)
fxtheta =
(981*((8836235812531391*h)/4503599627370496 + 1499.9993954193889930311396801317)^2)/(2000000*cos(pi/6 - 0.52363352427033321420523588398365)^2) + (tan(pi/6 - 0.52363352427033321420523588398365)*((8836235812531391*h)/4503599627370496 + 1499.9993954193889930311396801317))/(20000*cos(pi/6 - 0.52363352427033321420523588398365)^2) + 1000
ans =
0.0018882263675909642813601409431637*h^2 + 2.8871384744661982638760370739896*h + 2103.6241090862540686603690416302
3 个评论
Torsten
2022-12-13
You can define a function dependent on an unknown h for which you want to find the root and use "fzero" or "fsolve" to solve for h.
That's exactly what "solve" will do in your case because it doesn't find an analytical solution for h.
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Number Theory 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!