I want to plane fit my sperical data points.

2 次查看(过去 30 天)
I want to correct this data with the radius, so that it creates a plane. The radius is known due measurements.
Thank you in advance.

采纳的回答

Bora Eryilmaz
Bora Eryilmaz 2022-12-20
编辑:Bora Eryilmaz 2022-12-20
Assuming a spherical surface with unknown origin (and perhaps radius), you can run an optimization algorithm to estimate the model parameters (origin, etc.) and subtract the location of the points on the surface of the sphere from your data. That would give you, roughly, a plane-like view of your data at a distance equal to the radius of the sphere.
A better planar view might be to actually project the data into an r-theta-z plane, but this would require a more complicated algorithm.
% "Unknown" model parameters.
x0 = 45;
y0 = 30;
z0 = -198;
r = 200.0;
% Construct the data surface
[X,Y] = meshgrid(0:1:100, 0:1:60);
Z = sqrt((r+randn(size(X))).^2 - (X-x0).^2 - (Y-y0).^2) + z0;
surf(X,Y,Z)
% Estimate model parameters x0, y0, z0, and r.
% You can remove "r" from the estimation if it is already known.
P0 = [30, 30, -30, 10];
options = optimset('MaxFunEvals', 2000);
P = fminsearch(@(p) fcn(p,X,Y,Z), P0, options)
P = 1×4
44.1685 29.7778 -200.0555 201.9682
% Project into the plane at distance r.
x0 = P(1);
y0 = P(2);
z0 = P(3);
r = P(4);
Zplane = Z - sqrt(r^2 - (X-x0).^2 - (Y-y0).^2) - z0;
surf(X,Y,Zplane)
function cost = fcn(p, X, Y, Z)
x0 = p(1);
y0 = p(2);
z0 = p(3);
r = p(4);
z = sqrt(r^2 - (X-x0).^2 - (Y-y0).^2) + z0;
cost = norm(z-Z, 2); % Least squares cost.
end
  3 个评论
Bora Eryilmaz
Bora Eryilmaz 2022-12-20
Yes, xco and yco need to be the same size for this to work. You may need to use ngrid() or meshgrid() commands to convert your data into the meshgrid format: https://www.mathworks.com/help/matlab/ref/meshgrid.html#mw_6ae7effe-9402-4974-b1a6-0391eba290d8.

请先登录,再进行评论。

更多回答(1 个)

Matt J
Matt J 2022-12-20
You can use sphericalFit() from this FEX download
to fit a sphere to your points (non-iteratively). This does not currently allow you to constrain the radius to a known value, however, if that is essential, it would at least give you a pretty good initial guess of (x0,y0,z0) for the iterative optimization proposed by @Bora Eryilmaz.

类别

Help CenterFile Exchange 中查找有关 Frequently-used Algorithms 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by