How to model a time series data with a custom function?

2 次查看(过去 30 天)
I'm trying to fit an ex-gaussian function to a time series of data. I tried to use the fit function of MATLAB. I don't know what I'm doing wrong, I'm not finding the best fitting parameters of my function.
Here is my code and an image of the results (plot on the right).
% Ex-Gaussian model
exGaussian = @(mu,sigma,tau,a0,a1,time) a0 + a1/2 .* exp((1./(2*tau)) .* (2.*mu+(sigma.^2./tau)-(2.*time))).*...
erfc((mu+(sigma.^2./tau)-time)./sqrt(2*sigma));
Fs = 20; %sampling frecuency
t = 0:1/Fs:5; %timestamp in seconds
%Parameters for the example data to fit
mu = 2;
sigma = .1;
tau = 1;
a0 = 1;
a1 = 19;
%Example data
y = exGaussian(mu,sigma,tau,a0,a1,t);
figure(1),clf
subplot(1,2,1)
plot(t, y), grid off
title('Example of data')
% Select the options to fit the model
opts = fitoptions('Method','NonlinearLeastSquares',...
'Lower',[0 0 0 5 10],'Upper',[10 2 10 30 50],...
'Startpoint',[1 0.1 0.1 1 1]);
exGfit = fittype('exGaussian(mu,sigma,tau,a0,a1,t)',...
'coefficients',{'mu','sigma','tau','a0','a1'},...
'independent','t','options',opts);
subplot(1,2,2)
[fitResult, fitStats, fitInfo] = fit(t',y',exGfit);
plot(fitResult,'-r',t,y,'.-b');
  1 个评论
Walter Roberson
Walter Roberson 2022-12-22
Guassians are difficult to fit -- some of the parameters need to be pretty close to the correct value or else you are very likely to get results that are no-where near correct.
That said, in this case it doesn't even do a great job when given the actual parameters as the starting point :(
% Ex-Gaussian model
exGaussian = @(mu,sigma,tau,a0,a1,time) a0 + a1/2 .* exp((1./(2*tau)) .* (2.*mu+(sigma.^2./tau)-(2.*time))).*...
erfc((mu+(sigma.^2./tau)-time)./sqrt(2*sigma));
Fs = 20; %sampling frecuency
t = 0:1/Fs:5; %timestamp in seconds
%Parameters for the example data to fit
mu = 2;
sigma = .1;
tau = 1;
a0 = 1;
a1 = 19;
%Example data
y = exGaussian(mu,sigma,tau,a0,a1,t);
figure(1),clf
subplot(1,2,1)
plot(t, y), grid off
title('Example of data')
% Select the options to fit the model
opts = fitoptions('Method','NonlinearLeastSquares',...
'Lower',[0 0 0 5 10],'Upper',[10 2 10 30 50],...
'Startpoint',[mu, sigma, tau, a0, a1]);
exGfit = fittype(exGaussian,...
'coefficients',{'mu','sigma','tau','a0','a1'},...
'independent','time','options',opts);
subplot(1,2,2)
[fitResult, fitStats, fitInfo] = fit(t',y',exGfit)
fitResult =
General model: fitResult(time) = a0+a1/2.*exp((1./(2*tau)).*(2.*mu+(sigma.^2./tau)-(2.*time) )).*erfc((mu+(sigma.^2./tau)-time)./sqrt(2*sigma)) Coefficients (with 95% confidence bounds): mu = 2.358 (1.745, 2.97) sigma = 0.07661 (-0.009826, 0.163) tau = 0.3223 (-0.0268, 0.6714) a0 = 5 (fixed at bound) a1 = 16.62 (13.08, 20.17)
fitStats = struct with fields:
sse: 607.8905 rsquare: 0.5742 dfe: 97 adjrsquare: 0.5611 rmse: 2.5034
fitInfo = struct with fields:
numobs: 101 numparam: 5 residuals: [101×1 double] Jacobian: [101×5 double] exitflag: 3 firstorderopt: 1.4248 iterations: 12 funcCount: 78 cgiterations: 0 algorithm: 'trust-region-reflective' stepsize: 0.0030 message: 'Success, but fitting stopped because change in residuals less than tolerance (TolFun).'
plot(fitResult,'-r',t,y,'.-b');

请先登录,再进行评论。

采纳的回答

Mathieu NOE
Mathieu NOE 2022-12-24
hello
a quick and dirty trial with the poor's man solution ( with fminsearch)
the only trick to avoid an error (because with negative sigma, sqrt(sigma) is complex), I modified the function :
sqrt(2*abs(sigma)))
not 100% scientific maybe regarding optimizer usage, but it's seems to work not too bad
made a few trials with different IC, not all will give a good fit but with a liitle effort we can probably refine the IC range
% Ex-Gaussian model
exGaussian = @(mu,sigma,tau,a0,a1,time) a0 + a1/2 .* exp((1./(2*tau)) .* (2.*mu+(sigma.^2./tau)-(2.*time))).*...
erfc((mu+(sigma.^2./tau)-time)./sqrt(2*abs(sigma)));
Fs = 20; %sampling frecuency
t = 0:1/Fs:5; %timestamp in seconds
%Parameters for the example data to fit
mu = 2;
sigma = .1;
tau = 1;
a0 = 1;
a1 = 19;
%Example data
y = exGaussian(mu,sigma,tau,a0,a1,t);
figure(1),clf
plot(t, y), grid off
title('Example of data')
% curve fit using fminsearch
obj_fun = @(p) norm(exGaussian(p(1),p(2),p(3),p(4),p(5),t)-y);
p0 = [0.5 0.01 0.5 y(1) max(y)]; % IC guess for mu,sigma,tau,a0,a1
sol = fminsearch(obj_fun, p0);
yfit = exGaussian(sol(1),sol(2),sol(3),sol(4),sol(5), t);
plot(t,yfit,'-',t,y,'r .','MarkerSize', 20);
title('Data', 'FontSize', 20)
ylabel('Amplitude', 'FontSize', 20)
xlabel('t', 'FontSize', 20)
legend('curve fit','raw data');

更多回答(1 个)

Prateek
Prateek 2023-1-9
Hi Ana,
A good way to fit ex-Gaussian function is to use the "interpolant" option in the curve fitting toolbox. I was able to obtain a good fit for the data providede by you:
Hope this helps.
Prateek

类别

Help CenterFile Exchange 中查找有关 Linear and Nonlinear Regression 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by