Invalid validation data table. For networks with feature input, predictors must be numeric arrays, where each variable of the table corresponds to one feature.

2 次查看(过去 30 天)
Hello, I am new to matlab. I want to ask what to do if there is an invalid validation data table error. This is my code
filename = "Data1.txt";
tbl = readtable(filename,'TextType','String');
labelName = "output";
tbl = convertvars(tbl,labelName,'categorical');
head(tbl)
categoricalInputNames = ["class" "fractaldimension"];
tbl = convertvars(tbl,categoricalInputNames,'categorical');
for i = 1:numel(categoricalInputNames)
name = categoricalInputNames(i);
oh = onehotencode(tbl(:,name));
tbl = addvars(tbl,oh,'After',name);
tbl(:,name) = [];
end
tbl = splitvars(tbl);
head(tbl)
classNames = categories(tbl{:,labelName});
numObservations = size(tbl,1);
numObservationsTrain = floor(0.7*numObservations);
numObservationsValidation = floor(0.15*numObservations);
numObservationsTest = numObservations - numObservationsTrain - numObservationsValidation;
idx = randperm(numObservations);
idxTrain = idx(1:numObservationsTrain);
idxValidation = idx(numObservationsTrain+1:numObservationsTrain+numObservationsValidation);
idxTest = idx(numObservationsTrain+numObservationsValidation+1:end);
tblTrain = tbl(idxTrain,:);
tblValidation = tbl(idxValidation,:);
tblTest = tbl(idxTest,:);
numFeatures = size(tbl,2) - 1;
numClasses = numel(classNames);
layers = [
featureInputLayer(numFeatures,'Normalization', 'zscore')
fullyConnectedLayer(83)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
miniBatchSize = 16;
options = trainingOptions('adam', ...
'MiniBatchSize',miniBatchSize, ...
'Shuffle','every-epoch', ...
'ValidationData',tblValidation, ...
'Plots','training-progress', ...
'Verbose',false);
net = trainNetwork(tblTrain,labelName,layers,options);
Invalid validation data table. For networks with feature input, predictors must be numeric arrays, where each
variable of the table corresponds to one feature.

回答(1 个)

Rohit
Rohit 2023-3-23
Hi Adib,
As mentioned in this documentation: https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html , you need to specify the validation data as a datastore, table, or the cell array {predictors,responses}, where predictors contains the validation predictors and responses contains the validation responses.
So, you need to modify code as shown below to get rid of error and start the training.
options = trainingOptions('adam', ...
'MiniBatchSize',miniBatchSize, ...
'Shuffle','every-epoch', ...
'ValidationData',{tblValidation,tblValidation(:,labelName)} ,... % passing validation date as cell array of predictors and responses
'Plots','training-progress', ...
'Verbose',false);

类别

Help CenterFile Exchange 中查找有关 Classification 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by