You can convert any piece of matlab code to python. In this case you can use the scipy.optimize.curve_fit function to fit a polynomial curve to the data, and then use the matplotlib library to plot the results.
Converting MatLAB Code to Matplotlib
21 次查看(过去 30 天)
显示 更早的评论
Is there a way to convert the following MATLAB code to python code with matplotlib?
function [fitresult, gof] = createFit(x, y, z)
%CREATEFIT(X,Y,Z)
% Create a fit.
%
% Data for 'untitled fit 1' fit:
% X Input: x
% Y Input: y
% Z Output: z
% Output:
% fitresult : a fit object representing the fit.
% gof : structure with goodness-of fit info.
%
% See also FIT, CFIT, SFIT.
% Auto-generated by MATLAB on 31-Dec-2022 13:53:58
%% Fit: 'untitled fit 1'.
[xData, yData, zData] = prepareSurfaceData( x, y, z );
% Set up fittype and options.
ft = fittype( 'poly22' );
opts = fitoptions( 'Method', 'LinearLeastSquares' );
opts.Normalize = 'on';
opts.Robust = 'Bisquare';
% Fit model to data.
[fitresult, gof] = fit( [xData, yData], zData, ft, opts );
% Plot fit with data.
figure( 'Name', 'untitled fit 1' );
h = plot( fitresult, [xData, yData], zData );
legend( h, 'untitled fit 1', 'z vs. x, y', 'Location', 'NorthEast', 'Interpreter', 'none' );
% Label axes
xlabel( 'x', 'Interpreter', 'none' );
ylabel( 'y', 'Interpreter', 'none' );
zlabel( 'z', 'Interpreter', 'none' );
grid on
0 个评论
采纳的回答
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Linear and Nonlinear Regression 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!