How to reduce its execution time and why the value of e is a column vector?

2 次查看(过去 30 天)
I have the following piece of code.
clc;clear all;
c = 340;
f = 3400;
d = c/f/2;
T = 1;
Sig = 2;
M = 6;
N = 7;
theta = linspace(-60, 60, Sig);
p = 6;
SNR = 10;
Fc=[2*10^3:2*10^3/(Sig-1):5*10^3];
T_Vector=1/f;
p_N = [0:M/p:M*(N-1)/p];
p_M = [0:N:(M-1)*N];
P = union(p_N,p_M);
A = zeros(length(P),Sig);
SigVec = zeros(Sig,T);
for Q = 1:Sig
A(:,Q) = exp(-j*P'*2*pi*d*sin(theta(Q)*pi/180)*f/c);
SigVec(Q,:) = exp(1j*2*pi*Fc(Q).*T_Vector);
end
%%%%%%%%%%%%%%%%%%
% xo calculation
%%%%%%%%%%%%%%%%%%
xo = A*SigVec;
%%%%%%%%%%%%%%%%%%%%%%%%%%
% xe calculation
%%%%%%%%%%%%%%%%%%%%%%%%%
b=theta;
for Q = 1:Sig
Ae(:,Q) = exp(-j*P'*2*pi*d*sin(b(Q)*pi/180)*f/c);
SigVec_est(Q,:) = exp(1j*2*pi*Fc(Q).*T_Vector);
end
xe = Ae*SigVec_est;
%%%%%%%%%%%%%%%%%
% MSE
%%%%%%%%%%%%%%%%
e = mean(abs(xo-xe).^2,2)
I want to reduce its execution time. Further, I want a single value of e as zero but it gives me a column vector of e.
  1 个评论
Sadiq Akbar
Sadiq Akbar 2023-1-3
Can you replace "Just the for-loops here by using concept of vectorization?". Leave the rest of the code, just replace the two for-loops here.

请先登录,再进行评论。

采纳的回答

Walter Roberson
Walter Roberson 2023-1-2
you are taking the mean over the second dimension of a column vector (which has a second dimension of length 1)

更多回答(1 个)

Voss
Voss 2023-1-3
@Sadiq Akbar: OK. See below.
Note that SigVec has T columns because of its pre-allocation, but that SigVec_est has one column because it was not pre-allocated in the original code. I've kept them like that (change T to something > 1 to see the difference).
clc;clear all;
c = 340;
f = 3400;
d = c/f/2;
T = 1;
Sig = 2;
M = 6;
N = 7;
theta = linspace(-60, 60, Sig);
p = 6;
SNR = 10;
Fc=[2*10^3:2*10^3/(Sig-1):5*10^3];
T_Vector=1/f;
p_N = [0:M/p:M*(N-1)/p];
p_M = [0:N:(M-1)*N];
P = union(p_N,p_M);
% A = zeros(length(P),Sig);
% SigVec = zeros(Sig,T);
%
% for Q = 1:Sig
% A(:,Q) = exp(-j*P'*2*pi*d*sin(theta(Q)*pi/180)*f/c);
% SigVec(Q,:) = exp(1j*2*pi*Fc(Q).*T_Vector);
% end
A = exp(-1j*P(:)*2*pi*d.*sin(theta*pi/180)*f/c);
SigVec = exp(1j*2*pi*Fc(:).*T_Vector*ones(1,T));
%%%%%%%%%%%%%%%%%%
% xo calculation
%%%%%%%%%%%%%%%%%%
xo = A*SigVec;
%%%%%%%%%%%%%%%%%%%%%%%%%%
% xe calculation
%%%%%%%%%%%%%%%%%%%%%%%%%
b=theta;
% for Q = 1:Sig
% Ae(:,Q) = exp(-j*P'*2*pi*d*sin(b(Q)*pi/180)*f/c);
% SigVec_est(Q,:) = exp(1j*2*pi*Fc(Q).*T_Vector);
% end
Ae = exp(-1j*P(:)*2*pi*d.*sin(b*pi/180)*f/c);
SigVec_est = exp(1j*2*pi*Fc(:).*T_Vector);
xe = Ae*SigVec_est;
%%%%%%%%%%%%%%%%%
% MSE
%%%%%%%%%%%%%%%%
e = mean(abs(xo-xe).^2,2)
e = 12×1
0 0 0 0 0 0 0 0 0 0
  14 个评论

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Classical Control Design 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by