How o define two different data set of (t , T) for an ode solver that it's variables are (t , C)?

2 次查看(过去 30 天)
How o define two different data set of (t , T) for an ode solver that it's variables are (t , C)?
I have an ode function that gives t (time) and C (Consentration) and there are k values that changes versus T (Temperature) and also temperature changes versus t. I have two different data set of (t , T) and I have to solve the ode equations to obtain C for both (t , T) data set in a one code.
Finally, I need to optimize k and Ea values for the two data set (which will be different from each other) and "alpha" (which should be the same for each data set).
So, I think I do not know how to define these two (t , T) data set for ode solver. I would be thankful if anyone could help me.
Here is my ode:
function dcdt = Cell_deg_60C(t,c,k0_vec,Ea_vec,alpha)
R = 8.314; % J/K.mol
%% For T=60 C
% I need to define T data in a vector like it T = [320.15 333.15 333.15 333.15 333.15 333.15 333.15 333.15 333.15 333.15]
% and For T=80 C ---> T= [321.15 334.15 348.15 353.15 353.15 353.15 353.15 353.15 353.15 353.15]
%% here I just defined one data set of T, because I have no idea how to define the second one
if t <= 720
T = 297.15 + ((320.15-297.15)*(t/540)); % K , s
else
T = 333.15;
end
%% ------------------------------------------------------------------------------------------------
k01 = k0_vec(1);
k02 = k0_vec(2);
k03 = k0_vec(3);
Ea1 = Ea_vec(1);
Ea2 = Ea_vec(2);
Ea3 = Ea_vec(3);
k1 = (k01.*exp(-Ea1./(R.*T)));
k2 = (k02.*exp(-Ea2./(R.*T)));
k3 = (k03.*exp(-Ea3./(R.*T)));
%% D=1 G=2 M=3 O=4
dcdt = zeros(4,1);
dcdt(1) = - k1.*c(1) - k3.*c(1);
dcdt(2) = k1.*c(1);
dcdt(3) = k1.*c(1) + 2*k3.*c(1) - k2.*c(3);
dcdt(4) = alpha*k2*c(3);
dcdt = [dcdt(1);dcdt(2);dcdt(3);dcdt(4)];
% here is odesolver mfile
c0 = zeros(4,1);
c0(1) = 0.14; % mol/l
c0(2) = 0.00045;
c0(3) = 0.01529;
c0(4) = 0.00101;
k0_vec = [0.63, 0.03, 0.951];
Ea_vec = [17000, 10000, 100000];
alpha = 1.44;
tspan = 60*[
9
12
27
42
57
72
87
102
117
132
]; % second
[t,c] = ode45(@(t,c) Cell_deg_60C(t,c,k0_vec,Ea_vec,alpha),tspan,c0);
plot (t/60,c);
legend('Disac','GISA','Monosac','Otheracids')
xlabel('time (min)');
ylabel('C at T=60C (mol/L)');

采纳的回答

Davide Masiello
Davide Masiello 2023-1-23
I think your code is fine, below you can see a slightly different approach that uses interpolation to define the T(t) dependence.
Regarding optimization, you'd have to provide experimental concentration profiles to carry it out.
% Parameters and ICs
c0 = [0.14 0.00045 0.01529 0.00101]; % Initial concentrations, mol/L
k0 = [0.63, 0.03, 0.951]; % Pre-exponential factors
Ea = [17000, 10000, 100000]; % Activation energies
alpha = 1.44; % Time vector, s
% Experimental temperatures and interpolation
time = 60*[9 12 27 42 57 72 87 102 117 132];
TEMP1 = [320.15 333.15 333.15 333.15 333.15 333.15 333.15 333.15 333.15 333.15];
TEMP2 = [321.15 334.15 348.15 353.15 353.15 353.15 353.15 353.15 353.15 353.15];
T1 = @(t)interp1(time,TEMP1,t);
T2 = @(t)interp1(time,TEMP2,t);
[t,c] = ode45(@(t,c) Cell_deg_60C(t,c,k0,Ea,alpha,T1),[time(1),time(end)],c0);
figure(1)
plot (t/60,c);
title('Kinetics with first temperature evolution')
xlabel('time (min)');
ylabel('C at T=60C (mol/L)');
legend('Disac','GISA','Monosac','Otheracids','Location','Best')
[t,c] = ode45(@(t,c) Cell_deg_60C(t,c,k0,Ea,alpha,T2),[time(1),time(end)],c0);
figure(2)
plot (t/60,c);
title('Kinetics with second temperature evolution')
xlabel('time (min)');
ylabel('C at T=80C (mol/L)');
legend('Disac','GISA','Monosac','Otheracids','Location','Best')
function dcdt = Cell_deg_60C(t,c,k0,Ea,alpha,T1)
R = 8.314; % Universal gas constantJ/K.mol
k = (k0.*exp(-Ea/(R*T1(t)))); % Rate constants
dcdt(1,1) = -k(1)*c(1)-k(3)*c(1);
dcdt(2,1) = k(1)*c(1);
dcdt(3,1) = k(1)*c(1)+2*k(3)*c(1)-k(2)*c(3);
dcdt(4,1) = alpha*k(2)*c(3);
end
  4 个评论

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Assembly 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by