How to numerically solve a system of coupled partial differential and algebraic equations?

26 次查看(过去 30 天)
I have a system of coupled partial differential and algebraic equations.
Two 1-D parabolic pdes coupled (function of x and time) with two algebraic equations. What would be the way to solve this sytem?
  14 个评论
Arpita
Arpita 2023-2-3
The version I sent you had the boundary conditions after the governing equations. Sorry about that.
Even with boundary conditions before the governing equations, I see the same problem.
With all three boundary conditions, I get the error that the DAE is greater than 1.
When I only use the dCmadx = 0 and dphimadx = 0 as the boundary conditions, I get the error: " Unable to meet integration tolerances without reducing the step size below the smallest value allowed (4.336809e-19) at time t."
Torsten
Torsten 2023-2-3
You should start with a simpler problem from which you know that potentially arising problems with the integrator stem from your programming, not from the difficulty or even unsolvability of the problem itself.

请先登录,再进行评论。

回答(1 个)

Sarthak
Sarthak 2023-3-9
Hi,
One way to solve a system of coupled partial differential equations (PDEs) and algebraic equations is to use a numerical method such as finite difference or finite element method. Here is an outline of the steps involved:
  1. Discretize the system of PDEs using a numerical method such as finite difference or finite element method. This will transform the PDEs into a system of algebraic equations.
  2. Combine the discretized PDEs with the algebraic equations to form a system of nonlinear algebraic equations.
  3. Use a numerical solver such as the Newton-Raphson method or a quasi-Newton method to solve the system of nonlinear algebraic equations.
  4. Repeat the process for each time step to obtain a time-dependent solution.

标签

产品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by